IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp769-774.html
   My bibliography  Save this article

Limits to growth in the renewable energy sector

Author

Listed:
  • Hansen, J.P.
  • Narbel, P.A.
  • Aksnes, D.L.

Abstract

It has been well documented that population growth, development of biological subsystems and the utilization of resources in ecology and economy frequently follow a logistic or sigmoid time-development. In the context of oil and gas extraction such development is known as Hubbert's peak oil theory. We observe that the logistic equation describes the historic development of nuclear and hydroelectric energy production as well. Previous studies have hypothesized that the present time fastest growing renewable technologies, wind and solar energy, will develop under similar constraints. Here, we provide evidence that the installation of these technologies follow a logistic curve. In contrast to what is commonly perceived, the specific growth rate in energy extraction from wind turbines and photovoltaics have decreased in recent years. In an optimistic scenario, where we have included forecasted data from the solar and wind associations four years into the future, the logistic model implies that the total installed capacity saturates at around 1.8TW in 2030. This is in sharp contrast to the almost established belief that these energy technologies will experience an exponential growth far into this century.

Suggested Citation

  • Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:769-774
    DOI: 10.1016/j.rser.2016.11.257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timilsina, Govinda R. & Cornelis van Kooten, G. & Narbel, Patrick A., 2013. "Global wind power development: Economics and policies," Energy Policy, Elsevier, vol. 61(C), pages 642-652.
    2. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    3. Changliang, Xia & Zhanfeng, Song, 2009. "Wind energy in China: Current scenario and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1966-1974, October.
    4. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) Part 2: Methodology," Ecological Economics, Elsevier, vol. 73(C), pages 158-167.
    5. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    6. Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
    7. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    8. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.
    9. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    10. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    11. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    13. Cerdá, Emilio & del Río, Pablo, 2015. "Different interpretations of the cost-effectiveness of renewable electricity support: Some analytical results," Energy, Elsevier, vol. 90(P1), pages 286-298.
    14. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    15. Martin A. Green, 2016. "Commercial progress and challenges for photovoltaics," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    16. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    17. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) part 1: An overview of biophysical economics," Ecological Economics, Elsevier, vol. 73(C), pages 152-157.
    18. Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Norwegian School of Economics, Department of Business and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Sanghyun Hong & Barry W. Brook, 2018. "Economic Feasibility of Energy Supply by Small Modular Nuclear Reactors on Small Islands: Case Studies of Jeju, Tasmania and Tenerife," Energies, MDPI, vol. 11(10), pages 1-11, September.
    3. Ebers Broughel, Anna & Hampl, Nina, 2018. "Community financing of renewable energy projects in Austria and Switzerland: Profiles of potential investors," Energy Policy, Elsevier, vol. 123(C), pages 722-736.
    4. Madsen, Dorte Nørgaard & Hansen, Jan Petter, 2019. "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    6. Regueiro-Ferreira, Rosa María & Alonso-Fernández, Pablo, 2023. "Interaction between renewable energy consumption and dematerialization: Insights based on the material footprint and the Environmental Kuznets Curve," Energy, Elsevier, vol. 266(C).
    7. Juan Ignacio Pe~na & Rosa Rodriguez, 2022. "Are EU Climate and Energy Package 20-20-20 targets achievable and compatible? Evidence from the impact of renewables on electricity prices," Papers 2202.01720, arXiv.org.
    8. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    9. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    10. Peña, Juan Ignacio & Rodríguez, Rosa, 2019. "Are EU's Climate and Energy Package 20-20-20 targets achievable and compatible? Evidence from the impact of renewables on electricity prices," Energy, Elsevier, vol. 183(C), pages 477-486.
    11. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    12. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
    13. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    14. Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
    15. Daniel Efurosibina Attoye & Timothy O. Adekunle & Kheira Anissa Tabet Aoul & Ahmed Hassan & Samuel Osekafore Attoye, 2018. "A Conceptual Framework for a Building Integrated Photovoltaics (BIPV) Educative-Communication Approach," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    16. Lowe, R.J. & Drummond, P., 2022. "Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    2. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    3. René Aïd & Matteo Basei & Huyên Pham, 2017. "The coordination of centralised and distributed generation," Working Papers hal-01517165, HAL.
    4. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    5. Ren'e Aid & Matteo Basei & Huy^en Pham, 2017. "A McKean-Vlasov approach to distributed electricity generation development," Papers 1705.01302, arXiv.org, revised Nov 2019.
    6. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    7. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    8. René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
    9. Marshman, Daniel & Brear, Michael & Ring, Brendan, 2022. "Impact of unit commitment and RoCoF constraints on revenue sufficiency in decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 106(C).
    10. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    11. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    12. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    13. Huiru Zhao & Sen Guo, 2015. "External Benefit Evaluation of Renewable Energy Power in China for Sustainability," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    14. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    15. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    16. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    17. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    18. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    19. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    20. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:769-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.