IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v69y2017icp719-734.html
   My bibliography  Save this article

Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward

Author

Listed:
  • Kluts, Ingeborg
  • Wicke, Birka
  • Leemans, Rik
  • Faaij, André

Abstract

This paper reviews European land and bioenergy potential studies to 1) identify shortcomings related to how they account for agricultural intensification and its associated environmental effects, and sustainability constraints, and 2) provide suggestions on how these shortcomings can be improved in future assessments. The key shortcomings are:

Suggested Citation

  • Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
  • Handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:719-734
    DOI: 10.1016/j.rser.2016.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    2. Monforti, F. & Bódis, K. & Scarlat, N. & Dallemand, J.-F., 2013. "The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 666-677.
    3. Christine Schleupner, 2007. "Wetland distribution modelling for optimal land use options in Europe," Working Papers FNU-135, Research unit Sustainability and Global Change, Hamburg University, revised May 2007.
    4. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    5. Uwe A. Schneider & Juraj Balkovic & Stephane de Cara & Oskar Franklin & Steffen Fritz & Petr Havlik & Ingo Huck & Kerstin Jantke & A. Maarit I. Kallio & Florian Klaxner & Alexander Moiseyev & Michael , 2008. "The European Forest and Agriculture Optimisation Model -- EUFASOM," Working Papers FNU-156, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    6. de Wit, Marc & Londo, Marc & Faaij, André, 2011. "Productivity developments in European agriculture: Relations to and opportunities for biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2397-2412, June.
    7. van Dam, J. & Junginger, M. & Faaij, A.P.C., 2010. "From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2445-2472, December.
    8. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    9. Scarlat, Nicolae & Dallemand, Jean-Franc¸ois & Banja, Manjola, 2013. "Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 595-606.
    10. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    11. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.
    12. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    2. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    3. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    4. Petra Hýsková & Štěpán Hýsek & Vilém Jarský, 2020. "The Utilization of Crop Residues as Forest Protection: Predicting the Production of Wheat and Rapeseed Residues," Sustainability, MDPI, vol. 12(14), pages 1-10, July.
    5. Zyadin, Anas & Natarajan, Karthikeyan & Latva-Käyrä, Petri & Igliński, Bartłomiej & Iglińska, Anna & Trishkin, Maxim & Pelkonen, Paavo & Pappinen, Ari, 2018. "Estimation of surplus biomass potential in southern and central Poland using GIS applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 204-215.
    6. Giovanni Ferrari & Federico Ioverno & Marco Sozzi & Francesco Marinello & Andrea Pezzuolo, 2021. "Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants," Energies, MDPI, vol. 14(13), pages 1-14, July.
    7. Grzegorz Lew & Beata Sadowska & Katarzyna Chudy-Laskowska & Grzegorz Zimon & Magdalena Wójcik-Jurkiewicz, 2021. "Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland," Energies, MDPI, vol. 14(22), pages 1-20, November.
    8. Birka Wicke & Ingeborg Kluts & Jan Peter Lesschen, 2020. "Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands," Land, MDPI, vol. 9(11), pages 1-18, November.
    9. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    10. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    11. Grzegorz Zimon & Marek Sobolewski & Grzegorz Lew, 2020. "An Influence of Group Purchasing Organizations on Financial Security of SMEs Operating in the Renewable Energy Sector—Case for Poland," Energies, MDPI, vol. 13(11), pages 1-17, June.
    12. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    13. Sallustio, Lorenzo & Pettenella, Davide & Merlini, Paolo & Romano, Raoul & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2018. "Assessing the economic marginality of agricultural lands in Italy to support land use planning," Land Use Policy, Elsevier, vol. 76(C), pages 526-534.
    14. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
    15. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    16. Sallustio, Lorenzo & Harfouche, Antoine L. & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2022. "Evaluating the potential of marginal lands available for sustainable cellulosic biofuel production in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    17. Lehtveer, Mariliis & Fridahl, Mathias, 2020. "Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences," Energy, Elsevier, vol. 213(C).
    18. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    20. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.
    21. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    22. Mandley, S.J. & Daioglou, V. & Junginger, H.M. & van Vuuren, D.P. & Wicke, B., 2020. "EU bioenergy development to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    2. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
    3. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.
    4. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    5. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    7. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    8. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.
    9. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Gérard, Maxence & Jayet, Pierre-Alain, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies," Energy Policy, Elsevier, vol. 177(C).
    11. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    12. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    13. Jenny Lieu & Niki Artemis Spyridaki & Rocio Alvarez-Tinoco & Wytze Van der Gaast & Andreas Tuerk & Oscar Van Vliet, 2018. "Evaluating Consistency in Environmental Policy Mixes through Policy, Stakeholder, and Contextual Interactions," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    14. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    15. Zhang, Jixiang & Li, Jun & Dong, Changqing & Zhang, Xiaolei & Rentizelas, Athanasios & Shen, Delong, 2021. "Comprehensive assessment of sustainable potential of agricultural residues for bioenergy based on geographical information system: A case study of China," Renewable Energy, Elsevier, vol. 173(C), pages 466-478.
    16. Gonzalez-Salazar, Miguel Angel & Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro & Finkenrath, Matthias & Poganietz, Witold-Roger, 2014. "Methodology for biomass energy potential estimation: Projections of future potential in Colombia," Renewable Energy, Elsevier, vol. 69(C), pages 488-505.
    17. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    18. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    19. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    20. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:719-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.