IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i4p2053-2069.html
   My bibliography  Save this article

Spatial variation of environmental impacts of regional biomass chains

Author

Listed:
  • van der Hilst, F.
  • Lesschen, J.P.
  • van Dam, J.M.C.
  • Riksen, M.
  • Verweij, P.A.
  • Sanders, J.P.M.
  • Faaij, A.P.C.

Abstract

In this study, the spatial variation of potential environmental impacts of bioenergy crops is quantitatively assessed. The cultivation of sugar beet and Miscanthus for bioethanol production in the North of the Netherlands is used as a case study. The environmental impacts included are greenhouse gas (GHG) emissions (during lifecycle and related to direct land use change), soil quality, water quantity and quality, and biodiversity. Suitable methods are selected and adapted based on an extensive literature review. The spatial variation in environmental impacts related to the spatial heterogeneity of the physical context is assessed using Geographical Information System (GIS). The case study shows that there are large spatial variations in environmental impacts of the introduction of bioenergy crops. Land use change (LUC) to sugar beet generally causes more negative environmental impacts than LUC to Miscanthus. LUC to Miscanthus could have positive environmental impacts in some areas. The most negative environmental impacts of a shift towards sugar beet and Miscanthus occur in the western wet pasture areas. The spatially combined results of the environmental impacts illustrate that there are several trade offs between environmental impacts: there are no areas were no negative environmental impacts occur. The assessment demonstrates a framework to identify areas with potential negative environmental impacts of bioenergy crop production and areas where bioenergy crop production have little negative or even positive environmental impacts.

Suggested Citation

  • van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:2053-2069
    DOI: 10.1016/j.rser.2012.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112000287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dam, J. & Faaij, A.P.C. & Hilbert, J. & Petruzzi, H. & Turkenburg, W.C., 2009. "Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part A: Potential and economic feasibility for national and international markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1710-1733, October.
    2. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    3. van Dam, J. & Junginger, M. & Faaij, A.P.C., 2010. "From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2445-2472, December.
    4. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    5. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    6. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    7. van Dam, J. & Faaij, A.P.C. & Hilbert, J. & Petruzzi, H. & Turkenburg, W.C., 2009. "Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part B. Environmental and socio-economic impacts on a regional level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1679-1709, October.
    8. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    9. Rowe, Rebecca L. & Street, Nathaniel R. & Taylor, Gail, 2009. "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 271-290, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    3. Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
    4. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    6. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    7. Diogo, V. & van der Hilst, F. & van Eijck, J. & Verstegen, J.A. & Hilbert, J. & Carballo, S. & Volante, J. & Faaij, A., 2014. "Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 208-224.
    8. Miyake, Saori & Smith, Carl & Peterson, Ann & McAlpine, Clive & Renouf, Marguerite & Waters, David, 2015. "Environmental implications of using ‘underutilised agricultural land’ for future bioenergy crop production," Agricultural Systems, Elsevier, vol. 139(C), pages 180-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    2. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    3. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    4. André P. C. Faaij, 2022. "Repairing What Policy Is Missing Out on: A Constructive View on Prospects and Preconditions for Sustainable Biobased Economy Options to Mitigate and Adapt to Climate Change," Energies, MDPI, vol. 15(16), pages 1-25, August.
    5. Diogo, V. & van der Hilst, F. & van Eijck, J. & Verstegen, J.A. & Hilbert, J. & Carballo, S. & Volante, J. & Faaij, A., 2014. "Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 208-224.
    6. Miyake, Saori & Smith, Carl & Peterson, Ann & McAlpine, Clive & Renouf, Marguerite & Waters, David, 2015. "Environmental implications of using ‘underutilised agricultural land’ for future bioenergy crop production," Agricultural Systems, Elsevier, vol. 139(C), pages 180-195.
    7. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    8. Julia Tomei & Stella Semino & Helena Paul & Lilian Joensen & Mario Monti & Erling Jelsøe, 2010. "Soy production and certification: the case of Argentinean soy-based biodiesel," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 371-394, April.
    9. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
    10. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    11. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    12. Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.
    13. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Xin-Gang, Zhao & Tian-Tian, Feng & Yu, Ma & Yi-Sheng, Yang & Xue-Fu, Pan, 2015. "Analysis on investment strategies in China: the case of biomass direct combustion power generation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 760-772.
    15. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    16. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    17. Ramirez-Contreras, Nidia Elizabeth & Faaij, André P.C., 2018. "A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 460-478.
    18. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    19. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.
    20. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:2053-2069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.