IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp761-774.html
   My bibliography  Save this article

Impacts of large-scale wind and solar power integration on California׳s net electrical load

Author

Listed:
  • Shaker, Hamid
  • Zareipour, Hamidreza
  • Wood, David

Abstract

Integration of wind- and solar-based generation into the electric grid has significantly grown over the past decade and is expected to grow to unprecedented levels in coming years. Several jurisdictions have set high targets for renewable energy integration. While electric grid operators have managed the variable and non-dispatchable nature of wind and solar power at current levels, large-scale integration of these resources would pose new challenges. In particular, the variable nature of wind and solar may lead to new electric grid operation and planning procedures.

Suggested Citation

  • Shaker, Hamid & Zareipour, Hamidreza & Wood, David, 2016. "Impacts of large-scale wind and solar power integration on California׳s net electrical load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 761-774.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:761-774
    DOI: 10.1016/j.rser.2015.12.287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115016706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hedegaard, K. & Meibom, P., 2012. "Wind power impacts and electricity storage – A time scale perspective," Renewable Energy, Elsevier, vol. 37(1), pages 318-324.
    2. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    3. Simonsen, Ingve, 2005. "Volatility of power markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 10-20.
    4. Azzopardi, Brian & Gabriel-Buenaventura, Alejandro, 2014. "Feasibility assessment for high penetration of distributed photovoltaics based on net demand planning," Energy, Elsevier, vol. 76(C), pages 233-240.
    5. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    6. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    7. Saarinen, Linn & Dahlbäck, Niklas & Lundin, Urban, 2015. "Power system flexibility need induced by wind and solar power intermittency on time scales of 1–14 days," Renewable Energy, Elsevier, vol. 83(C), pages 339-344.
    8. Chaiamarit, Kunjana & Nuchprayoon, Somboon, 2014. "Impact assessment of renewable generation on electricity demand characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 995-1004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Dunguo Mou, 2019. "Pumped storage hydro power’s function in the electricity market under the electricity deregulation background in China – A case study of Fujian province," Energy & Environment, , vol. 30(6), pages 951-968, September.
    3. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    4. Hu, Shu-bo & Gao, Zheng-nan & He, Hai & Cao, Wen-ping & Zhao, Yu-ting & Zhou, Wei & Gu, Hong & Sun, Hui, 2020. "Adaptive time division power dispatch based on numerical characteristics of net loads," Energy, Elsevier, vol. 205(C).
    5. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
    6. Shubo Hu & Feixiang Peng & Zhengnan Gao & Changqiang Ding & Hui Sun & Wei Zhou, 2019. "Sample Entropy Based Net Load Tracing Dispatch of New Energy Power System," Energies, MDPI, vol. 12(1), pages 1-23, January.
    7. Li, Chen & Zhu, Zhijie & Yang, Hufang & Li, Ranran, 2019. "An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization," Energy, Elsevier, vol. 174(C), pages 1219-1237.
    8. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    9. Ruggles, Tyler H. & Caldeira, Ken, 2022. "Wind and solar generation may reduce the inter-annual variability of peak residual load in certain electricity systems," Applied Energy, Elsevier, vol. 305(C).
    10. Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
    11. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    12. Tang, Yuchen & Cheng, John W.M. & Duan, Qinwei & Lee, Cheuk Wing & Zhong, Jin, 2019. "Evaluating the variability of photovoltaics: A new stochastic method to generate site-specific synthetic solar data and applications to system studies," Renewable Energy, Elsevier, vol. 133(C), pages 1099-1107.
    13. Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
    14. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    15. Mou, Dunguo & He, Xiaoping, 2019. "Developing large-scale energy storage to alleviate a low-carbon energy bubble," Energy Policy, Elsevier, vol. 132(C), pages 62-74.
    16. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
    17. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).
    18. Xin Sui & Shengyang Lu & Hai He & Yuting Zhao & Shubo Hu & Ziqian Liu & Hong Gu & Hui Sun, 2020. "Wind-Thermal-Nuclear-Storage Combined Time Division Power Dispatch Based on Numerical Characteristics of Net Load," Energies, MDPI, vol. 13(2), pages 1-24, January.
    19. Ye, Liang-Cheng & Lin, Hai Xiang & Tukker, Arnold, 2019. "Future scenarios of variable renewable energies and flexibility requirements for thermal power plants in China," Energy, Elsevier, vol. 167(C), pages 708-714.
    20. Seong-Hyeon Ahn & Jin-Hee Hyun & Jin-Ho Choi & Seong-Geun Lee & Gyu-Gwang Kim & Byeong-Gwan Bhang & Hae-Lim Cha & Byeong-Yong Lim & Hoon-Joo Choi & Hyung-Keun Ahn, 2023. "Load-Following Operation of Small Modular Reactors under Unit Commitment Planning with Various Photovoltaic System Conditions," Energies, MDPI, vol. 16(7), pages 1-16, March.
    21. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    22. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    23. Antonelli, Marco & Desideri, Umberto & Franco, Alessandro, 2018. "Effects of large scale penetration of renewables: The Italian case in the years 2008–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3090-3100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    2. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    3. Philip Tafarte & Marcus Eichhorn & Daniela Thrän, 2019. "Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany," Energies, MDPI, vol. 12(2), pages 1-23, January.
    4. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    5. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    6. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    7. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    8. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    9. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    10. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    11. Baptiste François & Benoit Hingray & Marco Borga & Davide Zoccatelli & Casey Brown & Jean-Dominique Creutin, 2018. "Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy," Energies, MDPI, vol. 11(2), pages 1-22, January.
    12. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    13. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    14. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    15. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    16. Bennett, Jeffrey A. & Fuhrman, Jay & Brown, Tyler & Andrews, Nathan & Fittro, Roger & Clarens, Andres F., 2019. "Feasibility of Using sCO2 Turbines to Balance Load in Power Grids with a High Deployment of Solar Generation," Energy, Elsevier, vol. 181(C), pages 548-560.
    17. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    18. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    19. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    20. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:761-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.