IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp757-769.html
   My bibliography  Save this article

Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level

Author

Listed:
  • Veldhuis, A.J.
  • Reinders, A.H.M.E.

Abstract

In this study the amount and costs of off-grid PV systems required to electrify Indonesian rural households lacking electricity access are estimated. Due to the Indonesian geography large differences exist among different provinces, therefore this study evaluates the potential and costs of off-grid PV systems for each province as a follow-up of a related study on grid-connected PV systems which we executed in 2012. In this study we calculate cumulative numbers for the nominal power of installed off-grid PV systems, their LCOE and the relative financial benefits compared with diesel generators, which are a common means for electricity generation in remote areas.

Suggested Citation

  • Veldhuis, A.J. & Reinders, A.H.M.E., 2015. "Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 757-769.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:757-769
    DOI: 10.1016/j.rser.2015.07.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500773X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    2. Gibson, John & Olivia, Susan, 2010. "The Effect of Infrastructure Access and Quality on Non-Farm Enterprises in Rural Indonesia," World Development, Elsevier, vol. 38(5), pages 717-726, May.
    3. Shaahid, S.M. & Al-Hadhrami, L.M. & Rahman, M.K., 2014. "Review of economic assessment of hybrid photovoltaic-diesel-battery power systems for residential loads for different provinces of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 174-181.
    4. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    5. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
    6. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    7. Fleck, Brian & Huot, Marc, 2009. "Comparative life-cycle assessment of a small wind turbine for residential off-grid use," Renewable Energy, Elsevier, vol. 34(12), pages 2688-2696.
    8. Radu Dan Rugescu (ed.), 2010. "Solar Energy," Books, IntechOpen, number 621.
    9. Szabó, S. & Bódis, K. & Huld, T. & Moner-Girona, M., 2013. "Sustainable energy planning: Leapfrogging the energy poverty gap in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 500-509.
    10. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    11. Veldhuis, A.J. & Reinders, A.H.M.E., 2013. "Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 315-324.
    12. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    13. Blum, Nicola U. & Sryantoro Wakeling, Ratri & Schmidt, Tobias S., 2013. "Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 482-496.
    14. van Ruijven, Bas J. & Schers, Jules & van Vuuren, Detlef P., 2012. "Model-based scenarios for rural electrification in developing countries," Energy, Elsevier, vol. 38(1), pages 386-397.
    15. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    3. Okoye, Chiemeka Onyeka & Solyalı, Oğuz, 2017. "Optimal sizing of stand-alone photovoltaic systems in residential buildings," Energy, Elsevier, vol. 126(C), pages 573-584.
    4. Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
    5. Okoye, Chiemeka Onyeka & Taylan, Onur & Baker, Derek K., 2016. "Solar energy potentials in strategically located cities in Nigeria: Review, resource assessment and PV system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 550-566.
    6. Tsiaras, Evangelos & Papadopoulos, Demetrios N. & Antonopoulos, Constantinos N. & Papadakis, Vagelis G. & Coutelieris, Frank A., 2020. "Planning and assessment of an off-grid power supply system for small settlements," Renewable Energy, Elsevier, vol. 149(C), pages 1271-1281.
    7. Hassan Ali & Han Phoumin & Steven R. Weller & Beni Suryadi, 2021. "Cost–Benefit Analysis of HELE and Subcritical Coal-Fired Electricity Generation Technologies in Southeast Asia," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    8. Choi, Chong Seok & Ravi, Sujith & Siregar, Iskandar Z. & Dwiyanti, Fifi Gus & Macknick, Jordan & Elchinger, Michael & Davatzes, Nicholas C., 2021. "Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    2. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    4. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    5. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    6. Ghaem Sigarchian, Sara & Paleta, Rita & Malmquist, Anders & Pina, André, 2015. "Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – Case study Kenya," Energy, Elsevier, vol. 90(P2), pages 1830-1841.
    7. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    9. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    10. van Ruijven, Bas J. & van Vuuren, Detlef P. & van Vliet, Jasper & Mendoza Beltran, Angelica & Deetman, Sebastiaan & den Elzen, Michel G.J., 2012. "Implications of greenhouse gas emission mitigation scenarios for the main Asian regions," Energy Economics, Elsevier, vol. 34(S3), pages 459-469.
    11. Bolukbasi, Gizem & Kocaman, Ayse Selin, 2018. "A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems," Energy, Elsevier, vol. 160(C), pages 536-543.
    12. Zaroni, Hebert & Maciel, Letícia B. & Carvalho, Diego B. & Pamplona, Edson de O., 2019. "Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system," Energy, Elsevier, vol. 172(C), pages 498-508.
    13. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    14. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    15. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    16. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    17. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    18. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation," Renewable Energy, Elsevier, vol. 94(C), pages 280-293.
    19. Adesanya, Adewale A. & Pearce, Joshua M., 2019. "Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Darcovich, K. & Kenney, B. & MacNeil, D.D. & Armstrong, M.M., 2015. "Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems," Applied Energy, Elsevier, vol. 141(C), pages 32-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:757-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.