IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp1156-1165.html
   My bibliography  Save this article

100% electric power potential of PV, wind power, and biomass energy in Awaji island Japan

Author

Listed:
  • Sakaguchi, Takushi
  • Tabata, Tomohiro

Abstract

This study discussed the electric energy potential of renewable energy in Awaji Island, Japan. In addition, the electric energy self-sufficiency ratio of renewable energy in 2050 was estimated in order to investigate the possibility of achieving 100% electric energy potential through renewable energy. We targeted renewable energy sources such as biomass, wind power, and PV. Firstly, the available energy from biomass was calculated. Next, the electric energy potentials from wind power and PV were also estimated, taking into account the current situation of island operations and future plans for instalment. The 2010 electric energy demand in Awaji Island was then calculated using statistical data. We also designed eight scenarios combining future forecasts of population and GDP and energy shifts.

Suggested Citation

  • Sakaguchi, Takushi & Tabata, Tomohiro, 2015. "100% electric power potential of PV, wind power, and biomass energy in Awaji island Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1156-1165.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1156-1165
    DOI: 10.1016/j.rser.2015.06.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
    2. Nisar, Arsalan & Monroy, Carlos Rodríguez, 2012. "Potential of the renewable energy development in Jammu and Kashmir, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5260-5267.
    3. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    4. Tiang, Tow Leong & Ishak, Dahaman, 2012. "Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3034-3042.
    5. Riva Sanseverino, Eleonora & Riva Sanseverino, Raffaella & Favuzza, Salvatore & Vaccaro, Valentina, 2014. "Near zero energy islands in the Mediterranean: Supporting policies and local obstacles," Energy Policy, Elsevier, vol. 66(C), pages 592-602.
    6. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    7. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    8. Milbrandt, Anelia R. & Heimiller, Donna M. & Perry, Andrew D. & Field, Christopher B., 2014. "Renewable energy potential on marginal lands in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 473-481.
    9. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    2. Marula Tsagkari & Jordi Roca Jusmet, 2020. "Renewable Energy Projects on Isolated Islands in Europe: A Policy Review," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 21-30.
    3. Jangwon Suh & Jeffrey R. S. Brownson, 2016. "Solar Farm Suitability Using Geographic Information System Fuzzy Sets and Analytic Hierarchy Processes: Case Study of Ulleung Island, Korea," Energies, MDPI, vol. 9(8), pages 1-24, August.
    4. Beccali, M. & Ciulla, G. & Di Pietra, B. & Galatioto, A. & Leone, G. & Piacentino, A., 2017. "Assessing the feasibility of cogeneration retrofit and district heating/cooling networks in small Italian islands," Energy, Elsevier, vol. 141(C), pages 2572-2586.
    5. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    6. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    8. Natsuka Tokumaru, 2020. "Coevolution of institutions and residents toward sustainable glocal development: a case study on the Kuni Umi solar power project on Awaji Island," Evolutionary and Institutional Economics Review, Springer, vol. 17(1), pages 197-217, January.
    9. Dong, Rentao & Xu, Jiuping & Lin, Bo, 2017. "ROI-based study on impact factors of distributed PV projects by LSSVM-PSO," Energy, Elsevier, vol. 124(C), pages 336-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    2. Damilola Elizabeth Babatunde & Olubayo Moses Babatunde & Tolulope Olusegun Akinbulire & Peter Olabisi Oluseyi, 2018. "Hybrid Energy Systems Model with the Inclusion of Energy Efficiency Measures: A Rural Application Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 310-323.
    3. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
    4. Baldini, Mattia & Klinge Jacobsen, Henrik, 2016. "Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences," MPRA Paper 102031, University Library of Munich, Germany.
    5. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.
    6. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Przemysław Kaszyński & Jacek Kamiński, 2020. "Coal Demand and Environmental Regulations: A Case Study of the Polish Power Sector," Energies, MDPI, vol. 13(6), pages 1-24, March.
    8. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    9. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    13. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    14. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    15. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    16. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    17. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    18. Ali, Ahmed Hamza H. & Ahmed, Mahmoud & Abdel-Gaied, S.M., 2013. "Investigation of heat transfer and fluid flow in transitional regime inside a channel with staggered plates heated by radiation for PV/T system," Energy, Elsevier, vol. 59(C), pages 255-264.
    19. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    20. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1156-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.