IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp592-602.html
   My bibliography  Save this article

Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

Author

Listed:
  • Yilmaz, Ceyhun
  • Kanoglu, Mehmet

Abstract

Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively.

Suggested Citation

  • Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:592-602
    DOI: 10.1016/j.energy.2014.03.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ganjehsarabi, Hadi & Gungor, Ali & Dincer, Ibrahim, 2012. "Exergetic performance analysis of Dora II geothermal power plant in Turkey," Energy, Elsevier, vol. 46(1), pages 101-108.
    2. Tolga Balta, M. & Dincer, Ibrahim & Hepbasli, Arif, 2010. "Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production," Energy, Elsevier, vol. 35(8), pages 3263-3272.
    3. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    4. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    5. Berry, Gene D. & Pasternak, Alan D. & Rambach, Glenn D. & Ray Smith, J. & Schock, Robert N., 1996. "Hydrogen as a future transportation fuel," Energy, Elsevier, vol. 21(4), pages 289-303.
    6. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    7. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    8. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    9. Zheng, Guozhong & Li, Feng & Tian, Zhe & Zhu, Neng & Li, Qianru & Zhu, Han, 2012. "Operation strategy analysis of a geothermal step utilization heating system," Energy, Elsevier, vol. 44(1), pages 458-468.
    10. Kanoglu, Mehmet & Bolatturk, Ali, 2008. "Performance and parametric investigation of a binary geothermal power plant by exergy," Renewable Energy, Elsevier, vol. 33(11), pages 2366-2374.
    11. Kanoglu, Mehmet & Dincer, Ibrahim & Rosen, Marc A., 2007. "Understanding energy and exergy efficiencies for improved energy management in power plants," Energy Policy, Elsevier, vol. 35(7), pages 3967-3978, July.
    12. Lipman, Timothy E., 2004. "What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy," Institute of Transportation Studies, Working Paper Series qt5w82s62b, Institute of Transportation Studies, UC Davis.
    13. Ram Mohan, Arun & Turaga, Uday & Shembekar, Vishakha & Elsworth, Derek & Pisupati, Sarma V., 2013. "Utilization of carbon dioxide from coal-based power plants as a heat transfer fluid for electricity generation in enhanced geothermal systems (EGS)," Energy, Elsevier, vol. 57(C), pages 505-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nong, Guangzai & Li, Ming & Chen, Yiyi & Zhou, Zongwen & Wang, Shuangfei, 2015. "Simulation of energy conversion in a plant of photocatalysts water splitting for hydrogen fuel," Energy, Elsevier, vol. 81(C), pages 471-476.
    2. Hekmatshoar, Maziyar & Deymi-Dashtebayaz, Mahdi & Gholizadeh, Mohammad & Dadpour, Daryoush & Delpisheh, Mostafa, 2022. "Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen," Energy, Elsevier, vol. 247(C).
    3. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    4. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    5. Guler, Omer Faruk & Sen, Ozan & Yilmaz, Ceyhun & Kanoglu, Mehmet, 2022. "Performance evaluation of a geothermal and solar-based multigeneration system and comparison with alternative case studies: Energy, exergy, and exergoeconomic aspects," Renewable Energy, Elsevier, vol. 200(C), pages 1517-1532.
    6. Yosaf, Salem & Ozcan, Hasan, 2018. "Exergoeconomic investigation of flue gas driven ejector absorption power system integrated with PEM electrolyser for hydrogen generation," Energy, Elsevier, vol. 163(C), pages 88-99.
    7. Mohammad Hossein Ahmadi & Seyed Ali Banihashem & Mahyar Ghazvini & Milad Sadeghzadeh, 2018. "Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy," Energy & Environment, , vol. 29(8), pages 1373-1392, December.
    8. Ge, Lan & Gong, Xuzhong & Wang, Zhi & Zhao, Lixin & Wang, Yuhua & Wang, Mingyong, 2016. "Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production," Energy, Elsevier, vol. 96(C), pages 372-382.
    9. Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.
    10. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems," Energy, Elsevier, vol. 260(C).
    11. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    12. Yilmaz, Ceyhun, 2018. "A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle," Renewable Energy, Elsevier, vol. 128(PA), pages 68-80.
    13. Soltani, Saeed, 2019. "Modified exergy and exergoeconomic analyses of a biomass post fired hydrogen production combined cycle," Renewable Energy, Elsevier, vol. 135(C), pages 1466-1480.
    14. Karayel, G. Kubilay & Javani, Nader & Dincer, Ibrahim, 2022. "Effective use of geothermal energy for hydrogen production: A comprehensive application," Energy, Elsevier, vol. 249(C).
    15. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    16. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    17. Yuan, Xian Ming & Guo, Hang & Liu, Jia Xing & Ye, Fang & Ma, Chong Fang, 2018. "Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitized regenerative fuel cell," Energy, Elsevier, vol. 162(C), pages 1041-1051.
    18. El-Askary, W.A. & Sakr, I.M. & Ibrahim, K.A. & Balabel, A., 2015. "Hydrodynamics characteristics of hydrogen evolution process through electrolysis: Numerical and experimental studies," Energy, Elsevier, vol. 90(P1), pages 722-737.
    19. Li, Guiqiang & Li, Jinpeng & Yang, Ruoxi & Chen, Xiangjie, 2022. "Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction," Applied Energy, Elsevier, vol. 323(C).
    20. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    21. Deng, Chun & Zhou, Yuhang & Chen, Cheng-Liang & Feng, Xiao, 2015. "Systematic approach for targeting interplant hydrogen networks," Energy, Elsevier, vol. 90(P1), pages 68-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Hossein Ahmadi & Seyed Ali Banihashem & Mahyar Ghazvini & Milad Sadeghzadeh, 2018. "Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy," Energy & Environment, , vol. 29(8), pages 1373-1392, December.
    2. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
    3. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.
    4. Unverdi, Murat & Cerci, Yunus, 2013. "Performance analysis of Germencik Geothermal Power Plant," Energy, Elsevier, vol. 52(C), pages 192-200.
    5. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    6. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
    7. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    8. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    9. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    10. Ganjehsarabi, Hadi & Gungor, Ali & Dincer, Ibrahim, 2012. "Exergetic performance analysis of Dora II geothermal power plant in Turkey," Energy, Elsevier, vol. 46(1), pages 101-108.
    11. Metin Gül & Ersin Akyüz, 2020. "Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification," Energies, MDPI, vol. 13(11), pages 1-20, June.
    12. Clarke, Joshua & McLeskey, James T., 2015. "Multi-objective particle swarm optimization of binary geothermal power plants," Applied Energy, Elsevier, vol. 138(C), pages 302-314.
    13. Mohammadkhani, Farzad & Ranjbar, Faramarz & Yari, Mortaza, 2015. "A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint," Energy, Elsevier, vol. 87(C), pages 425-434.
    14. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    15. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    16. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    17. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    18. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    19. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:592-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.