IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v26y2013icp135-146.html
   My bibliography  Save this article

A review of output power smoothing methods for wind energy conversion systems

Author

Listed:
  • Howlader, Abdul Motin
  • Urasaki, Naomitsu
  • Yona, Atsushi
  • Senjyu, Tomonobu
  • Saber, Ahmed Yousuf

Abstract

Wind energy is inexhaustible renewable. Unlike conventional fossil fuels, wind energy is clean, abundant energy that will be available for future generations. However, wind speed is a highly stochastic component which can deviate very quickly. Output power of the wind energy conversion system (WECS) is proportional to the cube of wind speed, which causes the output power fluctuation of the wind turbine. The power fluctuation causes frequency fluctuation and voltage flicker inside the power grid. In order to reduce the power fluctuation, various approaches have been proposed in the last decades. This article deals with the review of several power smoothing strategies for the WECS. Power smoothing methods of the WECS are primarily separated into two categories such as energy storage based power smoothing method and without energy storage based power smoothing method. The main objectives of this paper are to introduce operating principles for different power smoothing methods. The energy storage based power smoothing method is effective but installation and maintenance costs of a storage device are very high. According to the literatures review, without energy storage based power smoothing method can reduce the cost of the WECS extensively. Various methods have been proposed to generate a smooth output power of the WECS without energy storage devices. Simulation results are compared among the available methods. From the review of simulation results, the kinetic energy of the inertia control method is the highly efficient power smoothing approach.

Suggested Citation

  • Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
  • Handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:135-146
    DOI: 10.1016/j.rser.2013.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113003316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    2. Michalak, Piotr & Zimny, Jacek, 2011. "Wind energy development in the world, Europe and Poland from 1995 to 2009; current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2330-2341, June.
    3. Komarov, Dragan & Stupar, Slobodan & Simonović, Aleksandar & Stanojević, Marija, 2012. "Prospects of wind energy sector development in Serbia with relevant regulatory framework overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2618-2630.
    4. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    5. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    6. Tiang, Tow Leong & Ishak, Dahaman, 2012. "Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3034-3042.
    7. Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
    8. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    9. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    10. Leclercq, Ludovic & Robyns, Benoit & Grave, Jean-Michel, 2003. "Control based on fuzzy logic of a flywheel energy storage system associated with wind and diesel generators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(3), pages 271-280.
    11. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    12. Balat, Havva, 2008. "Contribution of green energy sources to electrical power production of Turkey: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1652-1666, August.
    13. Sharma, Atul & Srivastava, Jaya & Kar, Sanjay Kumar & Kumar, Anil, 2012. "Wind energy status in India: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1157-1164.
    14. Ilkiliç, Cumali & Türkbay, Ismail, 2010. "Determination and utilization of wind energy potential for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2202-2207, October.
    15. Dincer, Furkan, 2011. "The analysis on wind energy electricity generation status, potential and policies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5135-5142.
    16. Hepbasli, Arif & Ozgener, Onder, 2004. "A review on the development of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 257-276, June.
    17. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    18. Kamel, Rashad M. & Chaouachi, Aymen & Nagasaka, Ken, 2010. "Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement Micro-Grid performance in islanding mode," Energy, Elsevier, vol. 35(5), pages 2119-2129.
    19. Iqbal, M.T., 2003. "Modeling and control of a wind fuel cell hybrid energy system," Renewable Energy, Elsevier, vol. 28(2), pages 223-237.
    20. Crawford, R.H., 2009. "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2653-2660, December.
    21. Chowdhury, M.A. & Hosseinzadeh, N. & Shen, W.X., 2012. "Smoothing wind power fluctuations by fuzzy logic pitch angle controller," Renewable Energy, Elsevier, vol. 38(1), pages 224-233.
    22. Alboyaci, Bora & Dursun, Bahtiyar, 2008. "Electricity restructuring in Turkey and the share of wind energy production," Renewable Energy, Elsevier, vol. 33(11), pages 2499-2505.
    23. Bolund, Björn & Bernhoff, Hans & Leijon, Mats, 2007. "Flywheel energy and power storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 235-258, February.
    24. Ghedamsi, K. & Aouzellag, D. & Berkouk, E.M., 2008. "Control of wind generator associated to a flywheel energy storage system," Renewable Energy, Elsevier, vol. 33(9), pages 2145-2156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Boyang Qu & Baihao Qiao & Yongsheng Zhu & Jingjing Liang & Ling Wang, 2017. "Dynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(12), pages 1-28, December.
    3. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    4. Atherton, J. & Sharma, R. & Salgado, J., 2017. "Techno-economic analysis of energy storage systems for application in wind farms," Energy, Elsevier, vol. 135(C), pages 540-552.
    5. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    6. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    7. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    9. Hyeong-Jin Lee & Sung-Hun Lim & Jae-Chul Kim, 2019. "Application of a Superconducting Fault Current Limiter to Enhance the Low-Voltage Ride-Through Capability of Wind Turbine Generators," Energies, MDPI, vol. 12(8), pages 1-14, April.
    10. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    11. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    12. José M. Maza-Ortega & Juan M. Mauricio & Manuel Barragán-Villarejo & Charis Demoulias & Antonio Gómez-Expósito, 2019. "Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks," Energies, MDPI, vol. 12(19), pages 1-22, September.
    13. Ding, Ning & Duan, Jinhui & Xue, Song & Zeng, Ming & Shen, Jianfei, 2015. "Overall review of peaking power in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 503-516.
    14. Howlader, Abdul Motin & Senjyu, Tomonobu, 2016. "A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 643-658.
    15. Fan, Jing-Li & Huang, Xi & Shi, Jie & Li, Kai & Cai, Jingwen & Zhang, Xian, 2023. "Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    17. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Rosmin, Norzanah, 2016. "Improving power grid performance using parallel connected Compressed Air Energy Storage and wind turbine system," Renewable Energy, Elsevier, vol. 96(PA), pages 498-508.
    18. Muhammad Jabir & Hazlee Azil Illias & Safdar Raza & Hazlie Mokhlis, 2017. "Intermittent Smoothing Approaches for Wind Power Output: A Review," Energies, MDPI, vol. 10(10), pages 1-23, October.
    19. Abdullah Al Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2020. "Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System," Energies, MDPI, vol. 13(11), pages 1-21, June.
    20. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    21. Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
    22. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    23. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    24. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamsal, Dipesh & Sreeram, Victor & Mishra, Yateendra & Kumar, Deepak, 2019. "Output power smoothing control approaches for wind and photovoltaic generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    3. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    4. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.
    5. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    6. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    7. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    8. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    9. İlkiliç, Cumali, 2012. "Wind energy and assessment of wind energy potential in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1165-1173.
    10. Ilkiliç, Cumali & Türkbay, Ismail, 2010. "Determination and utilization of wind energy potential for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2202-2207, October.
    11. Dursun, Bahtiyar & Gokcol, Cihan, 2014. "Impacts of the renewable energy law on the developments of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 318-325.
    12. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Ertürk, Mehmet, 2012. "The evaluation of feed-in tariff regulation of Turkey for onshore wind energy based on the economic analysis," Energy Policy, Elsevier, vol. 45(C), pages 359-367.
    14. Đurišić, Željko & Mikulović, Jovan & Babić, Iva, 2012. "Impact of wind speed variations on wind farm economy in the open market conditions," Renewable Energy, Elsevier, vol. 46(C), pages 289-296.
    15. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Bianchi, Fernando D., 2013. "Energy management of flywheel-based energy storage device for wind power smoothing," Applied Energy, Elsevier, vol. 110(C), pages 207-219.
    16. Keleş, S. & Bilgen, S., 2012. "Renewable energy sources in Turkey for climate change mitigation and energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5199-5206.
    17. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.
    18. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    19. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    20. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:135-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.