IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v22y2013icp432-437.html
   My bibliography  Save this article

Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development

Author

Listed:
  • Shi, Yan
  • Ge, Ying
  • Chang, Jie
  • Shao, Hongbo
  • Tang, Yuli

Abstract

Garden waste biomass is a potentially underutilized renewable biofuel feedstock, which is increasing dramatically with rapid urbanization worldwide. China has experienced fast-paced urbanization over the past three decades: the settlement area has increased at a rate of 6.1% annually, with greenspace increasing by 12.7% annually from 1996 to 2008. This paper provides a synthesis of literature and experimental data to trace the potential of garden waste biomass for green renewable energy production in China. Our results show that the total potential biofuel produced by garden waste biomass was estimated at 260 petajoules (PJ), accounting for 20.7% of China's urban residential electricity consumption, or 12.6% of China's transport gasoline demand in 2008. Thus the use of garden waste biomass for energy production will contribute to the construction of low-carbon cities. However, there are still many difficulties—the main challenges are how to quantify the available garden waste biomass accurately, and technical and financial issues with the exploitation of garden waste biomass for energy production. Finally, we provide several practical suggestions for the future development of garden waste biomass for energy production. The use of garden waste for energy production in urban areas could be a win–win approach for mitigating both the burden of disposed costs and the energy crisis.

Suggested Citation

  • Shi, Yan & Ge, Ying & Chang, Jie & Shao, Hongbo & Tang, Yuli, 2013. "Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 432-437.
  • Handle: RePEc:eee:rensus:v:22:y:2013:i:c:p:432-437
    DOI: 10.1016/j.rser.2013.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113000919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    2. Liu, Li-qun & Liu, Chun-xia & Sun, Zhi-yi, 2011. "A survey of China's low-carbon application practice--Opportunity goes with challenge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2895-2903, August.
    3. Dong Liu & Xu Wu & Jie Chang & Baojing Gu & Yong Min & Ying Ge & Yan Shi & Hui Xue & Changhui Peng & Jianguo Wu, 2012. "Constructed wetlands as biofuel production systems," Nature Climate Change, Nature, vol. 2(3), pages 190-194, March.
    4. de Wit, Marc & Londo, Marc & Faaij, André, 2011. "Productivity developments in European agriculture: Relations to and opportunities for biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2397-2412, June.
    5. Perednis, Eugenijus & Katinas, Vladislovas & Markevičius, Antanas, 2012. "Assessment of wood fuel use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5391-5398.
    6. Míguez, J.L. & Morán, J.C. & Granada, E. & Porteiro, J., 2012. "Review of technology in small-scale biomass combustion systems in the European market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3867-3875.
    7. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    8. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    9. Scarlat, Nicolae & Dallemand, Jean-Francois & Skjelhaugen, Odd Jarle & Asplund, Dan & Nesheim, Lars, 2011. "An overview of the biomass resource potential of Norway for bioenergy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3388-3398, September.
    10. Guo, Dong-Gang & Zhang, Xiao-Yang & Shao, Hong-Bo & Bai, Zhong-Ke & Chu, Li-Ye & Shangguan, Tie-Liang & Yan, Kun & Zhang, Li-Hua & Xu, Gang & Sun, Jun-Na, 2011. "Energy plants in the coastal zone of China: Category, distribution and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2014-2020, May.
    11. Jillian W. Gregg & Clive G. Jones & Todd E. Dawson, 2003. "Urbanization effects on tree growth in the vicinity of New York City," Nature, Nature, vol. 424(6945), pages 183-187, July.
    12. Yusaf, Talal & Goh, Steven & Borserio, J.A., 2011. "Potential of renewable energy alternatives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2214-2221, June.
    13. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    14. Di Giacomo, G. & Taglieri, L., 2009. "Renewable energy benefits with conversion of woody residues to pellets," Energy, Elsevier, vol. 34(5), pages 724-731.
    15. Dodić, Siniša N. & Vasiljević, Tamara Zelenović & Marić, Radenko M. & Kosanović, Aleksandar J. Radukin & Dodić, Jelena M. & Popov, Stevan D., 2012. "Possibilities of application of waste wood biomass as an energy source in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2355-2360.
    16. Salomón, Marianne & Savola, Tuula & Martin, Andrew & Fogelholm, Carl-Johan & Fransson, Torsten, 2011. "Small-scale biomass CHP plants in Sweden and Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4451-4465.
    17. Gu, Baojing & Liu, Dong & Wu, Xu & Ge, Ying & Min, Yong & Jiang, Hong & Chang, Jie, 2011. "Utilization of waste nitrogen for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4910-4916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Gupta, Ankita & Mahajani, Sanjay, 2020. "Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: Experiments and modeling," Energy, Elsevier, vol. 208(C).
    3. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying & Ji, Qiang, 2018. "Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 56-73.
    4. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    5. Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.
    6. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    7. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    8. Foo, K.Y., 2015. "A vision on the opportunities, policies and coping strategies for the energy security and green energy development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1477-1498.
    9. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Liu, Xiaozhou & Zhu, Guangyu & Asim, Taimoor & Mishra, Rakesh, 2022. "Application of momentum flux method for the design of an α-shaped flame incinerator fueled with two-component solid waste," Energy, Elsevier, vol. 248(C).
    11. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    12. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2017. "Biomass in the generation of electricity in Portugal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 373-378.
    13. Maria José Negro & Cristina Álvarez & Pablo Doménech & Raquel Iglesias & Ignacio Ballesteros, 2020. "Sugars Production from Municipal Forestry and Greening Wastes Pretreated by an Integrated Steam Explosion-Based Process," Energies, MDPI, vol. 13(17), pages 1-14, August.
    14. Aamir Mehmood Shah & Gengyuan Liu & Fanxin Meng & Qing Yang & Jingyan Xue & Stefano Dumontet & Renato Passaro & Marco Casazza, 2021. "A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus," Energies, MDPI, vol. 14(15), pages 1-24, July.
    15. Shi, Yan & Du, Yuanyuan & Yang, Guofu & Tang, Yuli & Fan, Likun & Zhang, Jun & Lu, Yijun & Ge, Ying & Chang, Jie, 2013. "The use of green waste from tourist attractions for renewable energy production: The potential and policy implications," Energy Policy, Elsevier, vol. 62(C), pages 410-418.
    16. Zhou, Chuanbin & Yang, Guang & Ma, Shijun & Liu, Yijie & Zhao, Zhilan, 2021. "The impact of the COVID-19 pandemic on waste-to-energy and waste-to-material industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    2. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    3. Yao, Yiqing & Zhou, Jianye & An, Lizhe & Kafle, Gopi Krishna & Chen, Shulin & Qiu, Ling, 2018. "Role of soil in improving process performance and methane yield of anaerobic digestion with corn straw as substrate," Energy, Elsevier, vol. 151(C), pages 998-1006.
    4. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    5. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    6. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    7. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    8. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    9. Shi, Yan & Du, Yuanyuan & Yang, Guofu & Tang, Yuli & Fan, Likun & Zhang, Jun & Lu, Yijun & Ge, Ying & Chang, Jie, 2013. "The use of green waste from tourist attractions for renewable energy production: The potential and policy implications," Energy Policy, Elsevier, vol. 62(C), pages 410-418.
    10. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    11. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
    12. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    14. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    15. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    16. Portugal-Pereira, Joana & Nakatani, Jun & Kurisu, Kiyo H. & Hanaki, Keisuke, 2015. "Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas," Energy, Elsevier, vol. 83(C), pages 284-293.
    17. Zhou, Zhifang & Xiao, Tian & Chen, Xiaohong & Wang, Chang, 2016. "A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 304-315.
    18. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    19. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    20. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:22:y:2013:i:c:p:432-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.