IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp282-293.html
   My bibliography  Save this article

Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis

Author

Listed:
  • Kumar, Komal
  • Pathak, Shailesh
  • Upadhyayula, Sreedevi

Abstract

This work investigates the thermodynamics and kinetics of the synthesis of 5-HMF-cyclic acetal, a fuel additive, from 5-HMF and 1,3-propanediol using lab synthesized, environmentally benign Brønsted acidic ionic liquid (IL) catalyst. Firstly, a thermodynamic study of the acetalization of 5-HMF with different mono and polyalcohols was carried out to evaluate the thermodynamic properties of critical temperature (Tc), critical volume (Vc), critical pressure (Pc), Gibbs free energy of formation (ΔGf0), enthalpy of formation (ΔfH0), and heat capacity (Cp) using group contribution methods. Then, kinetics of 5-HMF acetalization with 1,3-propanediol was investigated in a batch autoclave using Brønsted acidic IL catalyst and effect of reaction parameters temperature, molar ratio of reactants and time were investigated on the conversion of 5-HMF into 5-HMF-cyclic acetal product and optimized for high 5-HMF conversion and cyclic acetal yield. A first-order pseudo-homogeneous kinetic model with a squared regression coefficient R2 > 0.99 fitted well with experimental data. The activation energy of the acetalization reaction is estimated to be 83 kJ/mol for the 1st order kinetics. Based on the catalyst activity, a plausible reaction mechanism was proposed for the acetalization reaction of 5-HMF and 1,3-propanediol. Finally, this manuscript reports an efficient method for the production of fuel-additive compound and valuable information for predicting the thermodynamic properties for the pure organic components.

Suggested Citation

  • Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:282-293
    DOI: 10.1016/j.renene.2020.11.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samudrala, Shanthi Priya & Kandasamy, Shalini & Bhattacharya, Sankar, 2020. "One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst," Renewable Energy, Elsevier, vol. 156(C), pages 883-892.
    2. Shi, Yan & Ge, Ying & Chang, Jie & Shao, Hongbo & Tang, Yuli, 2013. "Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 432-437.
    3. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    4. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    5. Parveen, Firdaus & Jaiswal, Meha & Upadhyayula, Sreedevi, 2018. "Effect of linkers (aliphatic/ aromatic) and anions on the activity of sulfonic acid functionalized ionic liquids towards catalyzing the hydrolysis of microcrystalline cellulose-an experimental and the," Renewable Energy, Elsevier, vol. 121(C), pages 590-596.
    6. Masteri-Farahani, Majid & Hosseini, Mahdiyeh-Sadat & Forouzeshfar, Newsha, 2020. "Propyl-SO3H functionalized graphene oxide as multipurpose solid acid catalyst for biodiesel synthesis and acid-catalyzed esterification and acetalization reactions," Renewable Energy, Elsevier, vol. 151(C), pages 1092-1101.
    7. Tan, H.W. & Abdul Aziz, A.R. & Aroua, M.K., 2013. "Glycerol production and its applications as a raw material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 118-127.
    8. Zainol, Muzakkir Mohammad & Amin, Nor Aishah Saidina & Asmadi, Mohd, 2019. "Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst," Renewable Energy, Elsevier, vol. 130(C), pages 547-557.
    9. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    10. Najafi Sarpiri, Jaleh & Najafi Chermahini, Alireza & Saraji, Mohammad & Shahvar, Ali, 2021. "Dehydration of carbohydrates into 5-hydroxymethylfurfural over vanadyl pyrophosphate catalysts," Renewable Energy, Elsevier, vol. 164(C), pages 11-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    2. Karimi, Sabah & Seidi, Farzad & Niakan, Mahsa & Shekaari, Hemayat & Masteri-Farahani, Majid, 2021. "Catalytic dehydration of fructose into 5-hydroxymethylfurfural by propyl sulfonic acid functionalized magnetic graphene oxide nanocomposite," Renewable Energy, Elsevier, vol. 180(C), pages 132-139.
    3. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    5. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    6. Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.
    7. Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
    8. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    9. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    10. Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
    11. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    12. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    13. Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
    14. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    15. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    16. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    17. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    18. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    19. Muñoz, Robinson & González, Aixa & Valdebenito, Fabiola & Ciudad, Gustavo & Navia, Rodrigo & Pecchi, Gina & Azócar, Laura, 2020. "Fly ash as a new versatile acid-base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1931-1939.
    20. Mamata Singhvi & Smita Zinjarde & Beom-Soo Kim, 2022. "Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:282-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.