IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp132-139.html
   My bibliography  Save this article

Catalytic dehydration of fructose into 5-hydroxymethylfurfural by propyl sulfonic acid functionalized magnetic graphene oxide nanocomposite

Author

Listed:
  • Karimi, Sabah
  • Seidi, Farzad
  • Niakan, Mahsa
  • Shekaari, Hemayat
  • Masteri-Farahani, Majid

Abstract

Covalent immobilization of propyl sulfonic acid groups on the surface of magnetic graphene oxide is reported as an efficient magnetically recoverable solid acid catalyst for the conversion of fructose into 5-hydroxymethylfurfural (5-HMF). The obtained nanocomposite has advantages of both graphene oxide (high surface area) and magnetic nanoparticles (fast and facile separation by a magnet). The numerous reaction parameters including solvent, reaction time, temperature, and amount of catalyst were optimized to attain maximum yield of 5-HMF. The results revealed that fructose could be effectively transformed into 5-HMF with a yield of 87% under the optimized reaction conditions. The catalyst could be magnetically separated from the reaction mixture. Moreover, the catalyst exhibited high stability and could be reused for at least five times without a discernible loss of catalytic performance.

Suggested Citation

  • Karimi, Sabah & Seidi, Farzad & Niakan, Mahsa & Shekaari, Hemayat & Masteri-Farahani, Majid, 2021. "Catalytic dehydration of fructose into 5-hydroxymethylfurfural by propyl sulfonic acid functionalized magnetic graphene oxide nanocomposite," Renewable Energy, Elsevier, vol. 180(C), pages 132-139.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:132-139
    DOI: 10.1016/j.renene.2021.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masteri-Farahani, Majid & Hosseini, Mahdiyeh-Sadat & Forouzeshfar, Newsha, 2020. "Propyl-SO3H functionalized graphene oxide as multipurpose solid acid catalyst for biodiesel synthesis and acid-catalyzed esterification and acetalization reactions," Renewable Energy, Elsevier, vol. 151(C), pages 1092-1101.
    2. Najafi Sarpiri, Jaleh & Najafi Chermahini, Alireza & Saraji, Mohammad & Shahvar, Ali, 2021. "Dehydration of carbohydrates into 5-hydroxymethylfurfural over vanadyl pyrophosphate catalysts," Renewable Energy, Elsevier, vol. 164(C), pages 11-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niakan, Mahsa & Masteri-Farahani, Majid & Seidi, Farzad, 2022. "Efficient glucose-to-HMF conversion in deep eutectic solvents over sulfonated dendrimer modified activated carbon," Renewable Energy, Elsevier, vol. 200(C), pages 1134-1140.
    2. Cai, Bo & Kang, Rui & Guo, Dayi & Feng, Junfeng & Ma, Tianyi & Pan, Hui, 2022. "An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-Hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1629-1638.
    3. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    4. Niakan, Mahsa & Masteri-Farahani, Majid & Seidi, Farzad, 2023. "Sulfonated ionic liquid immobilized SBA-16 as an active solid acid catalyst for the synthesis of biofuel precursor 5-hydroxymethylfurfural from fructose," Renewable Energy, Elsevier, vol. 212(C), pages 50-56.
    5. Dowaki, Taishi & Guo, Haixin & Smith, Richard Lee, 2022. "Lignin-derived biochar solid acid catalyst for fructose conversion into 5-ethoxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1534-1542.
    6. Yang, Xiaoxun & Sadughi, Mohammad Mehdi & Bahadoran, Ashkan & Al-Haideri, Maysoon & Ghamari Kargar, Pouya & Noori, Aiyah S. & Sajjadinezhad, Seyed Mehrzad, 2023. "A new method for conversion of fructose and glucose to 5-hydroxymethylfurfural by magnetic mesoporous of SBA-16 was modified to sulfonic acid as Lewis's acid catalysts," Renewable Energy, Elsevier, vol. 209(C), pages 145-156.
    7. Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.
    2. Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
    3. Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
    4. Muñoz, Robinson & González, Aixa & Valdebenito, Fabiola & Ciudad, Gustavo & Navia, Rodrigo & Pecchi, Gina & Azócar, Laura, 2020. "Fly ash as a new versatile acid-base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1931-1939.
    5. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2021. "Influence of carbon casting loading and ultrasound irradiation on catalytic design of Al–Si–P zeotype nanostructure for biofuel production," Renewable Energy, Elsevier, vol. 177(C), pages 290-307.
    6. Sangsiri, Pimpajee & Laosiripojana, Navadol & Daorattanachai, Pornlada, 2022. "Synthesis of sulfonated carbon-based catalysts from organosolv lignin and methanesulfonic acid: Its activity toward esterification of stearic acid," Renewable Energy, Elsevier, vol. 193(C), pages 113-127.
    7. Hafizi, Hamid & Walker, Gavin & Collins, Maurice N., 2022. "Efficient production of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and carbohydrates over lewis/brønsted hybrid magnetic dendritic fibrous silica core-shell catalyst," Renewable Energy, Elsevier, vol. 183(C), pages 459-471.
    8. Ibrahim, Shaimaa M., 2021. "Preparation, characterization and application of novel surface-modified ZrSnO4 as Sn-based TMOs catalysts for the stearic acid esterification with methanol to biodiesel," Renewable Energy, Elsevier, vol. 173(C), pages 151-163.
    9. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    10. Gouda, Shiva Prasad & Ngaosuwan, Kanokwan & Assabumrungrat, Suttichai & Selvaraj, Manickam & Halder, Gopinath & Rokhum, Samuel Lalthazuala, 2022. "Microwave assisted biodiesel production using sulfonic acid-functionalized metal-organic frameworks UiO-66 as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 197(C), pages 161-169.
    11. Cai, Bo & Kang, Rui & Guo, Dayi & Feng, Junfeng & Ma, Tianyi & Pan, Hui, 2022. "An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-Hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1629-1638.
    12. Go, Alchris Woo & Quijote, Kristelle L. & Alivio, Roxanne Kathlyn O. & Ju, Yi-Hsu & Gunarto, Chintya & Angkawijaya, Artik Elisa & Santoso, Shella Permatasari & Yuliana, Maria, 2022. "Pre-functionalized and lipid-dense post-hydrolysis rice bran as feedstock for FAME production via non-isothermal in-situ (trans)esterification with subcritical methanol," Renewable Energy, Elsevier, vol. 189(C), pages 13-24.
    13. Goyal, Reena & Abraham, B. Moses & Singh, Omvir & Sameer, Siddharth & Bal, Rajaram & Mondal, Prasenjit, 2022. "One-pot transformation of glucose into hydroxymethyl furfural in water over Pd decorated acidic ZrO2," Renewable Energy, Elsevier, vol. 183(C), pages 791-801.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:132-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.