IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1483-d335284.html
   My bibliography  Save this article

Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review

Author

Listed:
  • Saifuddin Nomanbhay

    (Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia)

  • Mei Yin Ong

    (Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia)

  • Kit Wayne Chew

    (School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia)

  • Pau-Loke Show

    (Department of Chemical and Environment Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia)

  • Man Kee Lam

    (Chemical Engineering Department, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

  • Wei-Hsin Chen

    (Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
    Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan
    Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
    Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

As a promising alternative renewable liquid fuel, biodiesel production has increased and eventually led to an increase in the production of its by-product, crude glycerol. The vast generation of glycerol has surpassed the market demand. Hence, the crude glycerol produced should be utilized effectively to increase the viability of biodiesel production. One of them is through crude glycerol upgrading, which is not economical. A good deal of attention has been dedicated to research for alternative material and chemicals derived from sustainable biomass resources. It will be more valuable if the crude glycerol is converted into glycerol derivatives, and so, increase the economic possibility of the biodiesel production. Studies showed that glycerol carbonate plays an important role, as a building block, in synthesizing the glycerol oligomers at milder conditions under microwave irradiation. This review presents a brief outline of the physio-chemical, thermodynamic, toxicological, production methods, reactivity, and application of organic carbonates derived from glycerol with a major focus on glycerol carbonate and dimethyl carbonate (DMC), as a green chemical, for application in the chemical and biotechnical field. Research gaps and further improvements have also been discussed.

Suggested Citation

  • Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1483-:d:335284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sujung Heo & Joon Weon Choi, 2019. "Potential and Environmental Impacts of Liquid Biofuel from Agricultural Residues in Thailand," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    2. Tan, H.W. & Abdul Aziz, A.R. & Aroua, M.K., 2013. "Glycerol production and its applications as a raw material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 118-127.
    3. Ang, Gaik Tin & Tan, Kok Tat & Lee, Keat Teong, 2014. "Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 61-70.
    4. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    5. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    6. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    7. Bagheri, Samira & Julkapli, Nurhidayatullaili Muhd & Yehye, Wageeh A., 2015. "Catalytic conversion of biodiesel derived raw glycerol to value added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 113-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanichaya Praikaew & Worapon Kiatkittipong & Farid Aiouache & Vesna Najdanovic-Visak & Kanokwan Ngaosuwan & Doonyapong Wongsawaeng & Jun Wei Lim & Su Shiung Lam & Kunlanan Kiatkittipong & Navadol Laos, 2021. "Process and Energy Intensification of Glycerol Carbonate Production from Glycerol and Dimethyl Carbonate in the Presence of Eggshell-Derived CaO Heterogeneous Catalyst," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Muhammad Harussani Moklis & Shou Cheng & Jeffrey S. Cross, 2023. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    5. Natalia Kujawska & Szymon Talbierz & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński, 2021. "Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol," Energies, MDPI, vol. 14(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    2. Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
    3. Muhammad Harussani Moklis & Shou Cheng & Jeffrey S. Cross, 2023. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    4. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    5. Rajesh Banu, J. & Yukesh Kannah, R. & Dinesh Kumar, M. & Preethi, & Kavitha, S. & Gunasekaran, M. & Zhen, Guangyin & Awasthi, Mukesh Kumar & Kumar, Gopalakrishnan, 2021. "Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    7. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Michael Barrowclough & L. Geyer, 2015. "Biofuel Policies: The Underground Limitation on Biofuels," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 21(1), pages 55-65, March.
    9. Soratana, Kullapa & Harden, Cheyenne L. & Zaimes, George G. & Rasutis, Daina & Antaya, Claire L. & Khanna, Vikas & Landis, Amy E., 2014. "The role of sustainability and life cycle thinking in U.S. biofuels policies," Energy Policy, Elsevier, vol. 75(C), pages 316-326.
    10. Ofelia Andrea Valdés Rodríguez & Arturo Pérez Vázquez & Caupolicán Muñoz Gamboa, 2014. "Drivers and Consequences of the First Jatropha curcas Plantations in Mexico," Sustainability, MDPI, vol. 6(6), pages 1-15, June.
    11. Štěpán Chrz & Karel Janda & Ladislav Krištoufek, 2014. "Modelování provázanosti trhů potravin, biopaliv a fosilních paliv [Modeling Interconnections within Food, Biofuel, and Fossil Fuel Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 117-140.
    12. Sudip Das & V.S. Prakash Attili, 2022. "Data analysis of ethanol blended petrol programme of India," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 171-191.
    13. Julia Hansson & Roman Hackl, 2016. "The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 413-429, July.
    14. Ullah, Kifayat & Kumar Sharma, Vinod & Dhingra, Sunil & Braccio, Giacobbe & Ahmad, Mushtaq & Sofia, Sofia, 2015. "Assessing the lignocellulosic biomass resources potential in developing countries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 682-698.
    15. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    16. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    17. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    18. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    19. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    20. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1483-:d:335284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.