IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4753-4762.html
   My bibliography  Save this article

Sustainable energy: A review of gasification technologies

Author

Listed:
  • Pereira, Emanuele Graciosa
  • da Silva, Jadir Nogueira
  • de Oliveira, Jofran L.
  • Machado, Cássio S.

Abstract

Biomass has been widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. The abundance of biomass ranks it as the third energy resource after oil and coal. The reduction of imported forms of energy, and the conservation of the limited supply of fossil fuels, depends upon the utilization of all other available fuel energy sources. Energy conversion systems based on the use of biomass are of particular interest to scientists because of their potential to reduce global CO2 emissions. With these considerations, gasification methods come to the forefront of biomass-to-energy conversions for a number of reasons. Primarily, gasification is more advantageous because of the conversion of biomass into a combustible gas, making it a more efficient process than other thermochemical processes. Biomass gasification has been studied widely as an efficient and sustainable technology for the generation of heat, production of hydrogen and ethanol, and power generation. Renewable energy can have a significant positive impact for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive, a challenge that renewable energy can attempt to correct by facilitating economic and social development in communities. This paper aims to take stock of the latest technologies for gasification.

Suggested Citation

  • Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4753-4762
    DOI: 10.1016/j.rser.2012.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pellegrini, Luiz Felipe & de Oliveira Junior, Silvio, 2011. "Combined production of sugar, ethanol and electricity: Thermoeconomic and environmental analysis and optimization," Energy, Elsevier, vol. 36(6), pages 3704-3715.
    2. Taylor, Gail, 2008. "Bioenergy for heat and electricity in the UK: A research atlas and roadmap," Energy Policy, Elsevier, vol. 36(12), pages 4383-4389, December.
    3. Lora, E.S. & Andrade, R.V., 2009. "Biomass as energy source in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 777-788, May.
    4. Liming, Huang, 2009. "Financing rural renewable energy: A comparison between China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1096-1103, June.
    5. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    6. Plis, P. & Wilk, R.K., 2011. "Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier," Energy, Elsevier, vol. 36(6), pages 3838-3845.
    7. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    8. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    9. Coronado, Christian Rodriguez & Yoshioka, Juliana Tiyoko & Silveira, José Luz, 2011. "Electricity, hot water and cold water production from biomass. Energetic and economical analysis of the compact system of cogeneration run with woodgas from a small downdraft gasifier," Renewable Energy, Elsevier, vol. 36(6), pages 1861-1868.
    10. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    11. Beenackers, A.A.C.M., 1999. "Biomass gasification in moving beds, a review of European technologies," Renewable Energy, Elsevier, vol. 16(1), pages 1180-1186.
    12. Sharma, Avdhesh Kr., 2009. "Experimental study on 75kWth downdraft (biomass) gasifier system," Renewable Energy, Elsevier, vol. 34(7), pages 1726-1733.
    13. Tremel, Alexander & Haselsteiner, Thomas & Kunze, Christian & Spliethoff, Hartmut, 2012. "Experimental investigation of high temperature and high pressure coal gasification," Applied Energy, Elsevier, vol. 92(C), pages 279-285.
    14. Hall, D. O., 1991. "Biomass energy," Energy Policy, Elsevier, vol. 19(8), pages 711-737, October.
    15. Mohammed, M.A.A. & Salmiaton, A. & Wan Azlina, W.A.K.G. & Mohammad Amran, M.S. & Fakhru'l-Razi, A. & Taufiq-Yap, Y.H., 2011. "Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1258-1270, February.
    16. Leung, Dennis Y. C. & Yin, X. L. & Wu, C. Z., 2004. "A review on the development and commercialization of biomass gasification technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 565-580, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    3. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    4. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    5. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    7. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    8. Zeng, Xi & Wang, Fang & Li, Hongling & Wang, Yin & Dong, Li & Yu, Jian & Xu, Guangwen, 2014. "Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier," Applied Energy, Elsevier, vol. 115(C), pages 9-16.
    9. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    10. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    11. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    13. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    14. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    15. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    16. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    17. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    18. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    19. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4753-4762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.