IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v17y2013icp283-290.html
   My bibliography  Save this article

Experts' view on Finland's energy policy

Author

Listed:
  • Valkila, N.
  • Saari, A.

Abstract

By international standards Finland's per capita emissions of carbon dioxide are fairly high. This study gives an outline of Finland's current energy policy, the threats and opportunities in the energy sector, and future scenarios in terms of energy production, use of nuclear power and the Finnish way of life. The aim of this study was to examine Finnish energy policy by means of a qualitative interview survey of selected energy sector experts. The results of the study indicate a lack of coherence in Finland's present energy policy. Economic uncertainties show up as the most significant threats affecting the energy sector. The most significant opportunities for Finland focus on the prospects for international exports of products, services and expertise based on Finnish energy efficiency and energy savings. Unanimity was expressed on the future direction of energy production in Finland, namely that it should focus on the development of renewable energy sources and the diversification of production technologies, although there were conflicting views among the experts interviewed regarding the use of nuclear power. In regard to the Finnish way of life, the most significant changes anticipated are under the themes of travel, housing, leisure and energy attitudes.

Suggested Citation

  • Valkila, N. & Saari, A., 2013. "Experts' view on Finland's energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 283-290.
  • Handle: RePEc:eee:rensus:v:17:y:2013:i:c:p:283-290
    DOI: 10.1016/j.rser.2012.09.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112005382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.09.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jollands, Nigel & Waide, Paul & Ellis, Mark & Onoda, Takao & Laustsen, Jens & Tanaka, Kanako & de T'Serclaes, Philippine & Barnsley, Ingrid & Bradley, Rick & Meier, Alan, 2010. "The 25 IEA energy efficiency policy recommendations to the G8 Gleneagles Plan of Action," Energy Policy, Elsevier, vol. 38(11), pages 6409-6418, November.
    2. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    3. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    4. Jay, Stephen, 2010. "Strategic environmental assessment for energy production," Energy Policy, Elsevier, vol. 38(7), pages 3489-3497, July.
    5. Valkila, Noora & Saari, Arto, 2010. "Urgent need for new approach to energy policy: The case of Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2068-2076, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    2. Jaakko J. Jääskeläinen & Sakari Höysniemi & Sanna Syri & Veli-Pekka Tynkkynen, 2018. "Finland’s Dependence on Russian Energy—Mutually Beneficial Trade Relations or an Energy Security Threat?," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    3. Jung, Nusrat & Moula, Munjur E. & Fang, Tingting & Hamdy, Mohamed & Lahdelma, Risto, 2016. "Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland," Renewable Energy, Elsevier, vol. 99(C), pages 813-824.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kantola, Mikko & Saari, Arto, 2013. "Renewable vs. traditional energy management solutions – A Finnish hospital facility case," Renewable Energy, Elsevier, vol. 57(C), pages 539-545.
    2. Valkila, Noora & Saari, Arto, 2010. "Urgent need for new approach to energy policy: The case of Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2068-2076, September.
    3. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    4. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    5. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    6. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    7. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    8. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    9. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    10. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    11. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    12. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    13. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    14. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    15. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    16. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    17. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    18. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    19. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    20. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:17:y:2013:i:c:p:283-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.