IDEAS home Printed from https://ideas.repec.org/a/spr/jenvss/v5y2015i2p130-137.html
   My bibliography  Save this article

Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis

Author

Listed:
  • Song Gao

Abstract

The Montreal Protocol has set an extraordinary example by applying scientific discoveries, technological innovations, and swift political actions to solving one of the most urgent environmental problems facing humans. With its ongoing implementation, the stratospheric ozone is expected to return to its 1980 levels around mid-twenty-first century. In addition, the Montreal Protocol has contributed to mitigating climate change by reducing the emissions of certain greenhouse gases. The management of several short-lived climate forcers, including hydrofluorocarbons, tropospheric ozone, black carbon, and methane, is worthy of consideration as a fast-response, near-term measure to curb climate change, while international treaties to reduce the emissions of long-lived climate forcers, such as carbon dioxide, are under discussion. This paper aims to provide a concise overview of the scientific concepts and atmospheric processes behind these policy considerations. The focus is on the fundamental atmospheric chemistry that provides the basis for a co-benefits approach in mitigating both climate change and stratospheric ozone depletion. Copyright AESS 2015

Suggested Citation

  • Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
  • Handle: RePEc:spr:jenvss:v:5:y:2015:i:2:p:130-137
    DOI: 10.1007/s13412-014-0207-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13412-014-0207-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13412-014-0207-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niel H. A. Bowerman & David J. Frame & Chris Huntingford & Jason A. Lowe & Stephen M. Smith & Myles R. Allen, 2013. "The role of short-lived climate pollutants in meeting temperature goals," Nature Climate Change, Nature, vol. 3(12), pages 1021-1024, December.
    2. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    3. Aixue Hu & Yangyang Xu & Claudia Tebaldi & Warren M. Washington & Veerabhadran Ramanathan, 2013. "Mitigation of short-lived climate pollutants slows sea-level rise," Nature Climate Change, Nature, vol. 3(8), pages 730-734, August.
    4. Mark Z. Jacobson, 2001. "Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols," Nature, Nature, vol. 409(6821), pages 695-697, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tareq K. Al-Awad & Motasem N. Saidan & Brian J. Gareau, 2018. "Halon management and ozone-depleting substances control in Jordan," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(3), pages 391-408, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seshadri, Ashwin K., 2015. "Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon," Ecological Economics, Elsevier, vol. 114(C), pages 47-57.
    2. Steven J Smith & Jean Chateau & Kalyn Dorheim & Laurent Drouet & Olivier Durand-Lasserve & Oliver Fricko & Shinichiro Fujimori & Tatsuya Hanaoka & Mathijs Harmsen & Jérôme Hilaire & Kimon Keramidas & , 2020. "Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis," Climatic Change, Springer, vol. 163(3), pages 1427-1442, December.
    3. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    4. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    5. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    6. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    7. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    8. Gunnar W. Schade, 2021. "Standardized Reporting Needed to Improve Accuracy of Flaring Data," Energies, MDPI, vol. 14(20), pages 1-8, October.
    9. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    10. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    11. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    12. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    13. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    14. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    15. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    16. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    17. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    18. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    19. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2012. "Seeing REDD: A Microeconomic Analysis of Carbon Sequestration in Indonesia," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126688, International Association of Agricultural Economists.
    20. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jenvss:v:5:y:2015:i:2:p:130-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.