IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i3d10.1007_s10584-020-02794-3.html
   My bibliography  Save this article

Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis

Author

Listed:
  • Steven J Smith

    (Pacific Northwest National Laboratory)

  • Jean Chateau

    (OECD Environment Directorate)

  • Kalyn Dorheim

    (Pacific Northwest National Laboratory)

  • Laurent Drouet

    (Centro Euro-Mediterraneo sui Cambiamenti Climatici)

  • Olivier Durand-Lasserve

    (OECD Environment Directorate)

  • Oliver Fricko

    (International Institute for Applied Systems Analysis (IIASA))

  • Shinichiro Fujimori

    (Kyoto University
    National Institute for Environmental Studies)

  • Tatsuya Hanaoka

    (National Institute for Environmental Studies)

  • Mathijs Harmsen

    (PBL Netherlands Environmental Assessment Agency
    Utrecht University)

  • Jérôme Hilaire

    (Leibniz Association
    Mercator Research Institute on Global Commons and Climate Change (MCC))

  • Kimon Keramidas

    (Joint Research Centre of the European Commission)

  • Zbigniew Klimont

    (International Institute for Applied Systems Analysis (IIASA))

  • Gunnar Luderer

    (Leibniz Association)

  • Maria Cecilia P. Moura

    (Pacific Northwest National Laboratory)

  • Keywan Riahi

    (International Institute for Applied Systems Analysis (IIASA))

  • Joeri Rogelj

    (International Institute for Applied Systems Analysis (IIASA)
    Imperial College)

  • Fuminori Sano

    (Research Institute of Innovative Technology for the Earth (RITE))

  • Detlef P. Vuuren

    (PBL Netherlands Environmental Assessment Agency
    Utrecht University)

  • Kenichi Wada

    (Research Institute of Innovative Technology for the Earth (RITE))

Abstract

The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame.

Suggested Citation

  • Steven J Smith & Jean Chateau & Kalyn Dorheim & Laurent Drouet & Olivier Durand-Lasserve & Oliver Fricko & Shinichiro Fujimori & Tatsuya Hanaoka & Mathijs Harmsen & Jérôme Hilaire & Kimon Keramidas & , 2020. "Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis," Climatic Change, Springer, vol. 163(3), pages 1427-1442, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02794-3
    DOI: 10.1007/s10584-020-02794-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02794-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02794-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    2. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    3. Aixue Hu & Yangyang Xu & Claudia Tebaldi & Warren M. Washington & Veerabhadran Ramanathan, 2013. "Mitigation of short-lived climate pollutants slows sea-level rise," Nature Climate Change, Nature, vol. 3(8), pages 730-734, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jon Sampedro & Stephanie Waldhoff & Marcus Sarofim & Rita Dingenen, 2023. "Marginal Damage of Methane Emissions: Ozone Impacts on Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1095-1126, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    2. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    3. Electra V. Petracou & Anastasios Xepapadeas & Athanasios N. Yannacopoulos, 2022. "Decision Making Under Model Uncertainty: Fréchet–Wasserstein Mean Preferences," Management Science, INFORMS, vol. 68(2), pages 1195-1211, February.
    4. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    5. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    6. Massimo Marinacci, 2015. "Model Uncertainty," Journal of the European Economic Association, European Economic Association, vol. 13(6), pages 1022-1100, December.
    7. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    8. Silvi, Mariateresa & Padilla Rosa, Emilio, 2023. "A tragedy of the horizons? An intertemporal perspective on public support for carbon taxes," Energy Economics, Elsevier, vol. 125(C).
    9. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    10. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    11. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    12. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    13. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    14. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    15. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    16. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    17. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.
    18. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    19. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    20. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02794-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.