IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p5188-5198.html
   My bibliography  Save this article

Changing Sunshine: Analyzing the dynamics of solar electricity policies in the global context

Author

Listed:
  • Deshmukh, Ranjit
  • Bharvirkar, Ranjit
  • Gambhir, Ashwin
  • Phadke, Amol

Abstract

Although solar costs have been dropping in recent years, solar power is still more expensive than conventional and other renewable energy options, and in most applications solar power still needs continuing government policy support. However, the need to achieve multiple objectives and ensure sufficient political support for solar power makes it difficult for policy makers to design an optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints imposed by broader economic, political and social conditions further complicates the task of policy making. In this paper, we present a framework to critically analyze the objectives behind different country policies, how factors such as macro-economic conditions and development paradigms affect the policy outcomes and finally, how these outcomes affect the overall cost reduction of solar energy. We find that while the extent of cost reduction through creation of large demand remains to be seen, it is essential for governments to provide adequate support for leapfrog RD&D, and exploit real comparative advantages across countries for effective solar cost reduction. Policy makers need to optimally design their policies by balancing national objectives and paying capacity with the global objective of solar power cost reduction in order to realize its full potential.

Suggested Citation

  • Deshmukh, Ranjit & Bharvirkar, Ranjit & Gambhir, Ashwin & Phadke, Amol, 2012. "Changing Sunshine: Analyzing the dynamics of solar electricity policies in the global context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5188-5198.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5188-5198
    DOI: 10.1016/j.rser.2012.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solangi, K.H. & Islam, M.R. & Saidur, R. & Rahim, N.A. & Fayaz, H., 2011. "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2149-2163, May.
    2. Jacob Funk Kirkegaard & Thilo Hanemann & Lutz Weischer & Matt Miller, 2010. "Toward a Sunny Future? Global Integration in the Solar PV Industry," Working Paper Series WP10-6, Peterson Institute for International Economics.
    3. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    4. Lund, P.D., 2009. "Effects of energy policies on industry expansion in renewable energy," Renewable Energy, Elsevier, vol. 34(1), pages 53-64.
    5. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    6. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    7. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    8. Zhang, Xilin & Kumar, Ashok, 2011. "Evaluating renewable energy-based rural electrification program in western China: Emerging problems and possible scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 773-779, January.
    9. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    10. Algieri, Bernardina & Aquino, Antonio & Succurro, Marianna, 2011. "Going “green”: trade specialisation dynamics in the solar photovoltaic sector," Energy Policy, Elsevier, vol. 39(11), pages 7275-7283.
    11. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
    12. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    13. John Brohman, 1996. "Postwar Development in the Asian NICs: Does the Neoliberal Model Fit Reality?," Economic Geography, Taylor & Francis Journals, vol. 72(2), pages 107-130, April.
    14. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    15. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    16. Liou, Hwa Meei, 2010. "Overview of the photovoltaic technology status and perspective in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1202-1215, May.
    17. Lund, P.D., 2011. "Boosting new renewable technologies towards grid parity – Economic and policy aspects," Renewable Energy, Elsevier, vol. 36(11), pages 2776-2784.
    18. Bin GU, 2011. "Mineral Export Restraints and Sustainable Development--Are Rare Earths Testing the WTO's Loopholes?," Journal of International Economic Law, Oxford University Press, vol. 14(4), pages 765-805, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    2. Zhi, Qiang & Sun, Honghang & Li, Yanxi & Xu, Yurui & Su, Jun, 2014. "China’s solar photovoltaic policy: An analysis based on policy instruments," Applied Energy, Elsevier, vol. 129(C), pages 308-319.
    3. de la Hoz, Jordi & Martín, Helena & Miret, Jaume & Castilla, Miguel & Guzman, Ramon, 2016. "Evaluating the 2014 retroactive regulatory framework applied to the grid connected PV systems in Spain," Applied Energy, Elsevier, vol. 170(C), pages 329-344.
    4. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    5. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    6. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    7. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    8. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    9. Kaivo-oja, Jari & Vehmas, Jarmo & Luukkanen, Jyrki, 2016. "Trend analysis of energy and climate policy environment: Comparative electricity production and consumption benchmark analyses of China, Euro area, European Union, and United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 464-474.
    10. Zhang, Fan, 2014. "Can solar panels leapfrog power grids? The World Bank experience 1992–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 811-820.
    11. de la Hoz, Jordi & Martín, Helena & Ballart, Jordi & Monjo, Lluis, 2014. "Evaluating the approach to reduce the overrun cost of grid connected PV systems for the Spanish electricity sector: Performance analysis of the period 2010–2012," Applied Energy, Elsevier, vol. 121(C), pages 159-173.
    12. Yujie Lu & Fangxin Yi & Shaocong Yu & Yangtian Feng & Yujuan Wang, 2022. "Pathways to Sustainable Deployment of Solar Photovoltaic Policies in 20 Leading Countries Using a Qualitative Comparative Analysis," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    13. de la Hoz, Jordi & Martín, Helena & Ballart, Jordi & Córcoles, Felipe & Graells, Moisès, 2013. "Evaluating the new control structure for the promotion of grid connected photovoltaic systems in Spain: Performance analysis of the period 2008–2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 541-554.
    14. Hoggett, Richard, 2014. "Technology scale and supply chains in a secure, affordable and low carbon energy transition," Applied Energy, Elsevier, vol. 123(C), pages 296-306.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2021. "What is the optimal subsidy for residential solar?," Energy Policy, Elsevier, vol. 155(C).
    2. Pillai, Unni, 2015. "Drivers of cost reduction in solar photovoltaics," Energy Economics, Elsevier, vol. 50(C), pages 286-293.
    3. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    4. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    5. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    6. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    7. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
    9. Mani, Swaminathan & Dhingra, Tarun, 2013. "Offshore wind energy policy for India—Key factors to be considered," Energy Policy, Elsevier, vol. 56(C), pages 672-683.
    10. Sung, Bongsuk & Song, Woo-Yong, 2014. "How government policies affect the export dynamics of renewable energy technologies: A subsectoral analysis," Energy, Elsevier, vol. 69(C), pages 843-859.
    11. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    12. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    13. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    14. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    15. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.
    16. Nemet, Gregory F. & Lu, Jiaqi & Rai, Varun & Rao, Rohan, 2020. "Knowledge spillovers between PV installers can reduce the cost of installing solar PV," Energy Policy, Elsevier, vol. 144(C).
    17. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
    18. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    19. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
    20. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5188-5198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.