IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i9p2505-2514.html
   My bibliography  Save this article

Prospect of concentrating solar power in China--the sustainable future

Author

Listed:
  • Hang, Qu
  • Jun, Zhao
  • Xiao, Yu
  • Junkui, Cui

Abstract

Limited fossil resources and severe environmental problems require new sustainable electricity generation options, which utilize renewable energies and are economical in the meantime. Concentrating solar power (CSP) generation is a proven renewable energy technology and has the potential to become cost-effective in the future, for it produces electricity from the solar radiation. In China, the electricity demand is rapidly increasing, while the solar resources and large wasteland areas are widely available in the western and northern part of China. To change the energy-intensive and environment-burdensome economical development way, Chinese government supports the development of this technology strongly. These factors altogether make China a suitable country for utilizing CSP technology. In this paper, the potential of CSP in China was studied and strategies to promote development of this technology were given.

Suggested Citation

  • Hang, Qu & Jun, Zhao & Xiao, Yu & Junkui, Cui, 2008. "Prospect of concentrating solar power in China--the sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2505-2514, December.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:9:p:2505-2514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00094-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    2. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    3. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    4. Kevin Ummel, 2010. "Concentrating Solar Power in China and India: A Spatial Analysis of Technical Potential and the Cost of Deployment," Working Papers id:2807, eSocialSciences.
    5. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    6. Janjai, S. & Laksanaboonsong, J. & Seesaard, T., 2011. "Potential application of concentrating solar power systems for the generation of electricity in Thailand," Applied Energy, Elsevier, vol. 88(12), pages 4960-4967.
    7. Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
    8. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    9. Mathews, John A. & Hu, Mei-Chih & Wu, Ching-Yan, 2015. "Are the land and other resources required for total substitution of fossil fuel power systems impossibly large? Evidence from concentrating solar power and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 275-281.
    10. Yu, Xiao & Qu, Hang, 2013. "The role of China's renewable powers against climate change during the 12th Five-Year and until 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 401-409.
    11. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    12. Chung-Ling Chien, John & Lior, Noam, 2011. "Concentrating solar thermal power as a viable alternative in China's electricity supply," Energy Policy, Elsevier, vol. 39(12), pages 7622-7636.
    13. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    14. Zhu, Zhao & Zhang, Da & Mischke, Peggy & Zhang, Xiliang, 2015. "Electricity generation costs of concentrated solar power technologies in China based on operational plants," Energy, Elsevier, vol. 89(C), pages 65-74.
    15. Li, Zeng-Yao & Huang, Zhen & Tao, Wen-Quan, 2016. "Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube," Energy, Elsevier, vol. 113(C), pages 1288-1303.
    16. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    17. Chen, Hsing Hung & Kang, He-Yau & Lee, Amy H.I., 2010. "Strategic selection of suitable projects for hybrid solar-wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 413-421, January.
    18. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    19. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    20. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    21. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    22. Kadir, Mohd Zainal Abidin Ab & Rafeeu, Yaaseen, 2010. "A review on factors for maximizing solar fraction under wet climate environment in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2243-2248, October.
    23. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    24. Mezher, Toufic & Dawelbait, Gihan & Abbas, Zeina, 2012. "Renewable energy policy options for Abu Dhabi: Drivers and barriers," Energy Policy, Elsevier, vol. 42(C), pages 315-328.
    25. Malagueta, Diego & Szklo, Alexandre & Soria, Rafael & Dutra, Ricardo & Schaeffer, Roberto & Moreira Cesar Borba, Bruno Soares, 2014. "Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system," Renewable Energy, Elsevier, vol. 68(C), pages 223-235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    2. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    3. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    4. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    5. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    6. Li, Yuqiang & Liu, Gang & Rao, Zhenghua & Liao, Shengming, 2015. "Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver," Renewable Energy, Elsevier, vol. 75(C), pages 257-265.
    7. García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
    8. Li, Sha & Xu, Guoqiang & Luo, Xiang & Quan, Yongkai & Ge, Yunting, 2016. "Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver," Energy, Elsevier, vol. 113(C), pages 95-107.
    9. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    10. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    11. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    12. Antonio Roma & Davide Pirino, 2008. "A Theoretical Model for the Extraction and Refinement of Natural Resources," Department of Economics University of Siena 537, Department of Economics, University of Siena.
    13. Weldekidan, Haftom & Strezov, Vladimir & Town, Graham, 2018. "Review of solar energy for biofuel extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 184-192.
    14. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
    15. El-Sayed, Mohamed A. H., 2005. "Solar supported steam production for power generation in Egypt," Energy Policy, Elsevier, vol. 33(10), pages 1251-1259, July.
    16. Cavallaro, Fausto, 2009. "Multi-criteria decision aid to assess concentrated solar thermal technologies," Renewable Energy, Elsevier, vol. 34(7), pages 1678-1685.
    17. Çinar, Can & Karabulut, Halit, 2005. "Manufacturing and testing of a gamma type Stirling engine," Renewable Energy, Elsevier, vol. 30(1), pages 57-66.
    18. He, Ya-Ling & Mei, Dan-Hua & Tao, Wen-Quan & Yang, Wei-Wei & Liu, Huai-Liang, 2012. "Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle," Applied Energy, Elsevier, vol. 97(C), pages 630-641.
    19. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    20. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:9:p:2505-2514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.