IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i1p57-66.html
   My bibliography  Save this article

Manufacturing and testing of a gamma type Stirling engine

Author

Listed:
  • Çinar, Can
  • Karabulut, Halit

Abstract

In this study, a gamma type Stirling engine with 276 cc swept volume was designed and manufactured. The engine was tested with air and helium by using an electrical furnace as heat source. Working characteristics of the engine were obtained within the range of heat source temperature 700–1000 °C and range of charge pressure 1–4.5 bar. Maximum power output was obtained with helium at 1000 °C heat source temperature and 4 bar charge pressure as 128.3 W. The maximum torque was obtained as 2 N m at 1000 °C heat source temperature and 4 bar helium charge pressure. Results were found to be encouraging to initiate a Stirling engine project for 1 kW power output.

Suggested Citation

  • Çinar, Can & Karabulut, Halit, 2005. "Manufacturing and testing of a gamma type Stirling engine," Renewable Energy, Elsevier, vol. 30(1), pages 57-66.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:1:p:57-66
    DOI: 10.1016/j.renene.2004.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104001715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    2. Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    2. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    3. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    4. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
    5. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    6. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2012. "Zero dimensional finite-time thermodynamic, three zones numerical model of a generic Stirling and its experimental validation," Renewable Energy, Elsevier, vol. 47(C), pages 167-174.
    7. Jiang, Han & Xi, Zhongli & A. Rahman, Anas & Zhang, Xiaoqing, 2020. "Prediction of output power with artificial neural network using extended datasets for Stirling engines," Applied Energy, Elsevier, vol. 271(C).
    8. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    9. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    10. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B. & Peultier, P., 2013. "Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle," Energy, Elsevier, vol. 49(C), pages 229-239.
    11. Karabulut, H. & Yücesu, H.S. & Çinar, C., 2006. "Nodal analysis of a Stirling engine with concentric piston and displacer," Renewable Energy, Elsevier, vol. 31(13), pages 2188-2197.
    12. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    2. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.
    3. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    4. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    5. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    6. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    7. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    8. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    9. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    10. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    11. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    12. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    13. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    14. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    15. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    16. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    17. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    18. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
    19. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a solar-powered solid state heat engine for electricity generation," Energy, Elsevier, vol. 93(P1), pages 165-172.
    20. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:1:p:57-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.