IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i6p873-886.html
   My bibliography  Save this article

Technical and economical evaluation of solar thermal power generation

Author

Listed:
  • Tsoutsos, Theocharis
  • Gekas, Vasilis
  • Marketaki, Katerina

Abstract

This article presents a feasibilty on a solar power system based on the Stirling dish (SD) technology, reviews and compares the available Stirling engines in the perspective of a solar Stirling system.

Suggested Citation

  • Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:6:p:873-886
    DOI: 10.1016/S0960-1481(02)00152-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102001520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00152-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norton, Brian & Eames, Phillip C & Lo, Steve NG, 1998. "Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems," Renewable Energy, Elsevier, vol. 15(1), pages 131-136.
    2. Klaiß, Helmut & Köhne, Rainer & Nitsch, Joachim & Sprengel, Uwe, 1995. "Solar thermal power plants for solar countries -- Technology, economics and market potential," Applied Energy, Elsevier, vol. 52(2-3), pages 165-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
    2. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    3. Nourhane Merabet & Lina Chouichi & Kaouther Kerboua, 2022. "Numerical design and simulation of a thermodynamic solar solution for a pilot residential building at the edge of the sun-belt region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12582-12608, November.
    4. Cavallaro, Fausto, 2009. "Multi-criteria decision aid to assess concentrated solar thermal technologies," Renewable Energy, Elsevier, vol. 34(7), pages 1678-1685.
    5. Çinar, Can & Karabulut, Halit, 2005. "Manufacturing and testing of a gamma type Stirling engine," Renewable Energy, Elsevier, vol. 30(1), pages 57-66.
    6. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    7. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    8. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    9. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    10. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    11. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    12. He, Ya-Ling & Mei, Dan-Hua & Tao, Wen-Quan & Yang, Wei-Wei & Liu, Huai-Liang, 2012. "Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle," Applied Energy, Elsevier, vol. 97(C), pages 630-641.
    13. Antonio Roma & Davide Pirino, 2008. "A Theoretical Model for the Extraction and Refinement of Natural Resources," Department of Economics University of Siena 537, Department of Economics, University of Siena.
    14. Li, Sha & Xu, Guoqiang & Luo, Xiang & Quan, Yongkai & Ge, Yunting, 2016. "Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver," Energy, Elsevier, vol. 113(C), pages 95-107.
    15. Weldekidan, Haftom & Strezov, Vladimir & Town, Graham, 2018. "Review of solar energy for biofuel extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 184-192.
    16. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
    17. El-Sayed, Mohamed A. H., 2005. "Solar supported steam production for power generation in Egypt," Energy Policy, Elsevier, vol. 33(10), pages 1251-1259, July.
    18. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    19. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    20. Beltrán-Chacon, Ricardo & Leal-Chavez, Daniel & Sauceda, D. & Pellegrini-Cervantes, Manuel & Borunda, Mónica, 2015. "Design and analysis of a dead volume control for a solar Stirling engine with induction generator," Energy, Elsevier, vol. 93(P2), pages 2593-2603.
    21. Hang, Qu & Jun, Zhao & Xiao, Yu & Junkui, Cui, 2008. "Prospect of concentrating solar power in China--the sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2505-2514, December.
    22. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    23. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.
    24. Li, Yuqiang & Liu, Gang & Rao, Zhenghua & Liao, Shengming, 2015. "Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver," Renewable Energy, Elsevier, vol. 75(C), pages 257-265.
    25. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sau, S. & Corsaro, N. & Crescenzi, T. & D’Ottavi, C. & Liberatore, R. & Licoccia, S. & Russo, V. & Tarquini, P. & Tizzoni, A.C., 2016. "Techno-economic comparison between CSP plants presenting two different heat transfer fluids," Applied Energy, Elsevier, vol. 168(C), pages 96-109.
    2. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    3. Denise Matos & João Gabriel Lassio & David Castelo Branco & Amaro Olímpio Pereira Júnior, 2022. "Perspectives for Expansion of Concentrating Solar Power (CSP) Generation Technologies in Brazil," Energies, MDPI, vol. 15(24), pages 1-16, December.
    4. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    5. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
    6. Klein, Sharon J.W. & Rubin, Edward S., 2013. "Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems," Energy Policy, Elsevier, vol. 63(C), pages 935-950.
    7. Lenzen, Manfred & Dey, Christopher, 2000. "Truncation error in embodied energy analyses of basic iron and steel products," Energy, Elsevier, vol. 25(6), pages 577-585.
    8. da Fonseca, Maryegli Borges & Poganietz, Witold-Roger & Gehrmann, Hans-Joachim, 2014. "Environmental and economic analysis of SolComBio concept for sustainable energy supply in remote regions," Applied Energy, Elsevier, vol. 135(C), pages 666-674.
    9. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    10. Cavallaro, Fausto, 2010. "Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems," Applied Energy, Elsevier, vol. 87(2), pages 496-503, February.
    11. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    12. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    13. Allouhi, Amine & Kousksou, Tarik & Jamil, Abdelmajid & El Rhafiki, Tarik & Mourad, Youssef & Zeraouli, Youssef, 2015. "Economic and environmental assessment of solar air-conditioning systems in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 770-781.
    14. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    15. Flueckiger, Scott & Yang, Zhen & Garimella, Suresh V., 2011. "An integrated thermal and mechanical investigation of molten-salt thermocline energy storage," Applied Energy, Elsevier, vol. 88(6), pages 2098-2105, June.
    16. Cui, Fuqing & He, Yaling & Cheng, Zedong & Li, Yinshi, 2013. "Study on combined heat loss of a dish receiver with quartz glass cover," Applied Energy, Elsevier, vol. 112(C), pages 690-696.
    17. Becerra-Lopez, Humberto R. & Golding, Peter, 2007. "Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas," Energy, Elsevier, vol. 32(11), pages 2167-2186.
    18. Wu, Shuang-Ying & Xiao, Lan & Cao, Yiding & Li, You-Rong, 2010. "A parabolic dish/AMTEC solar thermal power system and its performance evaluation," Applied Energy, Elsevier, vol. 87(2), pages 452-462, February.
    19. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    20. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:6:p:873-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.