IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307208.html
   My bibliography  Save this article

A review on municipal solid waste-to-energy trends in the USA

Author

Listed:
  • Mukherjee, C.
  • Denney, J.
  • Mbonimpa, E.G.
  • Slagley, J.
  • Bhowmik, R.

Abstract

This review on current US municipal solid waste-to-energy trends highlighted regional contrasts on technology adoption, unique challenges of each technology, commonly used decision support tools, and major operators. In US only 13% of MSW is used for energy recovery and 53% is landfilled. There are 86 WTE facilities that mostly use Mass-Burn and Refuse-Derived Fuel technologies and are concentrated in densely populated northeast (predominantly in New York) and the State of Florida. For the rest of the country most of the MSW ends up in landfills equipped with gas recovery, which is supplied to homes or used for electricity generation. However, there are many pilot and experimental systems based on advanced gasification and pyrolysis processes, which are viewed as potential technologies to respond to an issue of landfills nearing full capacity in various US states. These systems are viewed as “cleaner” (65% less toxic residue) than established mass burn technologies but not matured to commercialization due technical and cost hurdles. Operation and maintenance costs between $40-$100 per ton of MSW were reported for gasification systems. The heterogeneous nature of MSW, gas cleaning and air pollution controls are the main disadvantages. Key design and decision support tools used by the scientific community and major operators in US include: Techno-economic analysis, Life cycle sustainability assessment, and Reverse logistics modeling. A conclusion drawn from reviewed studies is that adoption of thermal WTE technologies in US could continue to increase, albeit slowly, in coastal and urban areas lacking suitable lands for new landfills.

Suggested Citation

  • Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307208
    DOI: 10.1016/j.rser.2019.109512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ricardo Castro & Maria João Alves & João Dias Coelho, 2018. "The Potential for Electricity Generation in Anaerobic Digestion of Municipal Solid Waste: The Real Case of TRATOLIXO," Springer Proceedings in Business and Economics, in: Albertina Dias & Bror Salmelin & David Pereira & Miguel Sales Dias (ed.), Modeling Innovation Sustainability and Technologies, pages 301-309, Springer.
    2. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    3. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    4. Fang, Wei & Zhang, Panyue & Zhang, Xuedong & Zhu, Xuefeng & van Lier, Jules B. & Spanjers, Henri, 2018. "White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: Efficiency and mechanisms," Energy, Elsevier, vol. 162(C), pages 534-541.
    5. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    6. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    7. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    8. Nakamura, Shunsuke & Kitano, Shigeru & Yoshikawa, Kunio, 2016. "Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed," Applied Energy, Elsevier, vol. 170(C), pages 186-192.
    9. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    10. Albertina Dias & Bror Salmelin & David Pereira & Miguel Sales Dias (ed.), 2018. "Modeling Innovation Sustainability and Technologies," Springer Proceedings in Business and Economics, Springer, number 978-3-319-67101-7, March.
    11. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    12. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    13. Evan K. Paleologos & Mohamed Elhakeem & Mohamed El Amrousi, 2018. "Bayesian Analysis of Air Emission Violations from Waste Incineration and Coincineration Plants," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2368-2378, November.
    14. Wang, Duo & Yuan, Wenqiao & Ji, Wei, 2011. "Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning," Applied Energy, Elsevier, vol. 88(5), pages 1656-1663, May.
    15. Göransson, Kristina & Söderlind, Ulf & He, Jie & Zhang, Wennan, 2011. "Review of syngas production via biomass DFBGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 482-492, January.
    16. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    17. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    18. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    19. Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
    20. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    21. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel, 2015. "Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices," Energy, Elsevier, vol. 93(P1), pages 864-873.
    22. Anyaoku, Chukwunonso Chinedu & Baroutian, Saeid, 2018. "Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 982-991.
    23. Yousaf Ali & Zain Aslam & Hammad Sajid Dar & UbaidUllah Mumtaz, 2018. "A multi-criteria decision analysis of solid waste treatment options in Pakistan: Lahore City—a case in point," Environment Systems and Decisions, Springer, vol. 38(4), pages 528-543, December.
    24. Ley, Eduardo & Macauley, Molly K. & Salant, Stephen W., 2002. "Spatially and Intertemporally Efficient Waste Management: The Costs of Interstate Trade Restrictions," Journal of Environmental Economics and Management, Elsevier, vol. 43(2), pages 188-218, March.
    25. Yin Pang & Leo Bahr & Peter Fendt & Lars Zigan & Stefan Will & Thomas Hammer & Manfred Baldauf & Robert Fleck & Dominik Müller & Jürgen Karl, 2018. "Plasma-Assisted Biomass Gasification with Focus on Carbon Conversion and Reaction Kinetics Compared to Thermal Gasification," Energies, MDPI, vol. 11(5), pages 1-24, May.
    26. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    27. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    28. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    29. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    30. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio & Cigolotti, Viviana & Nam, Suk Woo & Yoon, Kyung Joong, 2018. "Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier," Applied Energy, Elsevier, vol. 227(C), pages 80-91.
    31. Wang, Wei-Cheng & Jan, Jyun-Jhih, 2018. "From laboratory to pilot: Design concept and techno-economic analyses of the fluidized bed fast pyrolysis of biomass," Energy, Elsevier, vol. 155(C), pages 139-151.
    32. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    33. Yufeng, Zhang & Na, Deng & Jihong, Ling & Changzhong, Xu, 2003. "A new pyrolysis technology and equipment for treatment of municipal household garbage and hospital waste," Renewable Energy, Elsevier, vol. 28(15), pages 2383-2393.
    34. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    35. Watson, Jamison & Zhang, Yuanhui & Si, Buchun & Chen, Wan-Ting & de Souza, Raquel, 2018. "Gasification of biowaste: A critical review and outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 1-17.
    36. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    37. Corti, Andrea & Lombardi, Lidia, 2004. "Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA)," Energy, Elsevier, vol. 29(12), pages 2109-2124.
    38. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    39. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    40. Singh, R.P. & Tyagi, V.V. & Allen, Tanu & Ibrahim, M. Hakimi & Kothari, Richa, 2011. "An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4797-4808.
    41. Martí-Herrero, J. & Soria-Castellón, G. & Diaz-de-Basurto, A. & Alvarez, R. & Chemisana, D., 2019. "Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste," Renewable Energy, Elsevier, vol. 133(C), pages 676-684.
    42. Tabasová, Andrea & Kropáč, Jiří & Kermes, Vít & Nemet, Andreja & Stehlík, Petr, 2012. "Waste-to-energy technologies: Impact on environment," Energy, Elsevier, vol. 44(1), pages 146-155.
    43. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    44. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    45. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    46. Chuanwang Sun & Xiaochun Meng & Shuijun Peng, 2017. "Effects of Waste-to-Energy Plants on China’s Urbanization: Evidence from a Hedonic Price Analysis in Shenzhen," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    47. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    48. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    49. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    50. Andrzej Białowiec & Monika Micuda & Jacek A. Koziel, 2018. "Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel," Energies, MDPI, vol. 11(11), pages 1-20, November.
    51. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    52. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    53. Ready Mark J. & Ready Richard C., 1995. "Optimal Pricing of Depletable, Replaceable Resources: The Case of Landfill Tipping Fees," Journal of Environmental Economics and Management, Elsevier, vol. 28(3), pages 307-323, May.
    54. P. Özge Kaplan & Morton A. Barlaz & S. Ranji Ranjithan, 2004. "A Procedure for Life‐Cycle‐Based Solid Waste Management with Consideration of Uncertainty," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 155-172, January.
    55. Kaushal, Priyanka & Tyagi, Rakesh, 2017. "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS," Renewable Energy, Elsevier, vol. 101(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Giel & Artur Kierzkowski, 2021. "A Fuzzy Multi-Criteria Model for Municipal Waste Treatment Systems Evaluation including Energy Recovery," Energies, MDPI, vol. 15(1), pages 1-16, December.
    2. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    3. Li, Wei & Yuan, Zhihang & Chen, Xiaoliang & Wang, Hui & Wang, Luochun & Lou, Ziyang, 2021. "Green refuse derived fuel preparation and combustion performance from the solid residues to build the zero-waste city," Energy, Elsevier, vol. 225(C).
    4. Kumar, Nagendra & Karmakar, Sujit, 2022. "Techno-economics of a trigeneration HRES; a step towards sustainable development," Renewable Energy, Elsevier, vol. 198(C), pages 833-840.
    5. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    6. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2023. "Gasification and Co-gasification of paper-rich, high-ash refuse-derived fuel in downdraft gasifier," Energy, Elsevier, vol. 263(PA).
    7. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    8. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    9. Istrate, Ioan-Robert & Medina-Martos, Enrique & Galvez-Martos, Jose-Luis & Dufour, Javier, 2021. "Assessment of the energy recovery potential of municipal solid waste under future scenarios," Applied Energy, Elsevier, vol. 293(C).
    10. Siqueira, Mario B. & Monteiro Filho, Arthur, 2021. "Hybrid concentrating solar-landfill gas power-generation concept for landfill energy recovery," Applied Energy, Elsevier, vol. 298(C).
    11. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    12. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Siripha Junlakarn & Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Stochastic Modeling of Renewable Energy Sources for Capacity Credit Evaluation," Energies, MDPI, vol. 15(14), pages 1-27, July.
    14. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    15. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    16. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    17. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Guanru Wang & Dariusz Krzywda & Sergey Kondrashev & Lubov Vorona-Slivinskaya, 2021. "Recycling and Upcycling in the Practice of Waste Management of Construction Giants," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    19. Shadbahr, Jalil & Ebadian, Mahmood & Gonzales-Calienes, Giovanna & Kannangara, Miyuru & Ahmadi, Leila & Bensebaa, Farid, 2022. "Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    21. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    4. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    5. Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.
    6. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    7. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & He, Tianzhi & Li, Juan, 2019. "Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures," Energy, Elsevier, vol. 179(C), pages 571-580.
    9. Ramos, Ana & Rouboa, Abel, 2020. "Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes," Renewable Energy, Elsevier, vol. 155(C), pages 1211-1221.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    11. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    12. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    13. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    14. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    15. Parrillo, Francesco & Ardolino, Filomena & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2021. "Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor," Energy, Elsevier, vol. 219(C).
    16. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Krzysztof Pikoń & Piotr Krawczyk & Krzysztof Badyda & Magdalena Bogacka, 2019. "Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology," Energies, MDPI, vol. 12(19), pages 1-11, September.
    18. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    20. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.