IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i2d10.1007_s10668-018-0235-7.html
   My bibliography  Save this article

An overview of municipal solid waste-to-energy application in Indian scenario

Author

Listed:
  • Paul Thomas

    (National Institute of Technology)

  • Nirmala Soren

    (National Institute of Technology)

Abstract

Municipal solid waste management is creating serious environmental issues for both developing and developed countries. Proper waste management solutions should be adopted to meet technological feasibility, and it should be financially and environmentally sustainable as well as socially and legally acceptable. Developing countries like India have introduced new policy frameworks for the proper management of municipal solid waste resources along with waste-to-energy recovery and material recycling. This paper gives a deep insight into municipal waste management systems and examines the energy and environmental policy issues to identify weak points in selection criteria for suitable technology. India is facing serious issues in the management of municipal solid waste and is trying to introduce better management solutions. From a technical perspective, both gasification and anaerobic digestion seem to be attractive when compared to traditional management approaches, but the economic feasibility of these technologies needs to be verified.

Suggested Citation

  • Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:2:d:10.1007_s10668-018-0235-7
    DOI: 10.1007/s10668-018-0235-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0235-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0235-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göransson, K. & Söderlind, U. & Engstrand, P. & Zhang, W., 2015. "An experimental study on catalytic bed materials in a biomass dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 81(C), pages 251-261.
    2. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    3. Mboowa, Drake & Quereshi, Shireen & Bhattacharjee, Chiranjit & Tonny, Kukeera & Dutta, Suman, 2017. "Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India)," Energy, Elsevier, vol. 123(C), pages 386-391.
    4. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    5. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    6. Anyaoku, Chukwunonso Chinedu & Baroutian, Saeid, 2018. "Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 982-991.
    7. Watson, Jamison & Zhang, Yuanhui & Si, Buchun & Chen, Wan-Ting & de Souza, Raquel, 2018. "Gasification of biowaste: A critical review and outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 1-17.
    8. Patra, Tapas Kumar & Sheth, Pratik N., 2015. "Biomass gasification models for downdraft gasifier: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 583-593.
    9. Sher, Farooq & Pans, Miguel A. & Afilaka, Daniel T. & Sun, Chenggong & Liu, Hao, 2017. "Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles," Energy, Elsevier, vol. 141(C), pages 2069-2080.
    10. Zhang, Qinglin & Dor, Liran & Fenigshtein, Dikla & Yang, Weihong & Blasiak, Wlodzmierz, 2012. "Gasification of municipal solid waste in the Plasma Gasification Melting process," Applied Energy, Elsevier, vol. 90(1), pages 106-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    2. Mohamed Abdallah & Ahmad Shabib & Abdul Razak Alozi & Mohamed Hussein, 2022. "A multisectoral assessment framework for the carbon footprint of integrated sustainable development systems in Dubai," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6246-6270, May.
    3. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    4. Fangkun Xin & Xingyue Wan, 2023. "A sustainable solution to promote interest-based municipal solid waste management," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    3. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    4. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    5. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    6. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    7. Ramos, Ana & Rouboa, Abel, 2022. "Life cycle thinking of plasma gasification as a waste-to-energy tool: Review on environmental, economic and social aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Ram, Mahendra & Mondal, Monoj Kumar, 2019. "Investigation on fuel gas production from pulp and paper waste water impregnated coconut husk in fluidized bed gasifier via humidified air and CO2 gasification," Energy, Elsevier, vol. 178(C), pages 522-529.
    9. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).
    10. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    11. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    12. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    13. Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
    14. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    15. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    16. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    17. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    18. Singh, Arashdeep & Basak, Prasenjit, 2022. "Conceptualization and techno-economic evaluation of municipal solid waste based microgrid," Energy, Elsevier, vol. 238(PB).
    19. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    20. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:2:d:10.1007_s10668-018-0235-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.