IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v109y2019icp514-531.html
   My bibliography  Save this article

Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland

Author

Listed:
  • Sliz-Szkliniarz, B.
  • Eberbach, J.
  • Hoffmann, B.
  • Fortin, M.

Abstract

Wind energy plays a key role in the transition to a low-carbon European energy system. The implementation of European and national targets for wind energy expansion is, however, challenged by technical, environmental, economic and social acceptance aspects. Further research on wind power expansion is compelled due to dynamic aspects such as land-use fluctuations, evolution of wind turbine technology, associated cost, and other factors. For that reason, a systematic approach for exploring future scenarios of onshore wind power development under techno-economic aspects and quantitative aspects of social acceptance (distributive justice and regulatory framework) was developed. The model was developed in Python, PostgreSQL and SQliteDB and encompasses a high-resolution GIS-based assessment of potential locations for wind turbines. Homogenous input data allows for analysing the wind power potential across Europe. Poland was chosen as a case study to examine the impact of the distance regulation introduced in 2016 and its subsequent amendments, which are relevant for onshore wind power development foreseen in the EU reference scenario 2016 for 2030. The findings show that Poland can reach the target of 10.3 GW set by the EU scenario at Levelized Cost of Electricity below €60/MWh. The transparent modelling framework and findings can support the decision making process on wind energy expansion, which is in the hands of policy makers, private investors and local citizens.

Suggested Citation

  • Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.
  • Handle: RePEc:eee:rensus:v:109:y:2019:i:c:p:514-531
    DOI: 10.1016/j.rser.2019.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKenna, R. & Hollnaicher, S. & Fichtner, W., 2014. "Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany," Applied Energy, Elsevier, vol. 115(C), pages 103-115.
    2. Masurowski, Frank & Drechsler, Martin & Frank, Karin, 2016. "A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany," Energy Policy, Elsevier, vol. 97(C), pages 343-350.
    3. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    4. van Haaren, Rob & Fthenakis, Vasilis, 2011. "GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3332-3340, September.
    5. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    6. Sovacool, Benjamin K. & Lakshmi Ratan, Pushkala, 2012. "Conceptualizing the acceptance of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5268-5279.
    7. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    8. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    9. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    10. Conroy, Niamh & Deane, J.P. & Ó Gallachóir, Brian P., 2011. "Wind turbine availability: Should it be time or energy based? – A case study in Ireland," Renewable Energy, Elsevier, vol. 36(11), pages 2967-2971.
    11. Liebe, Ulf & Bartczak, Anna & Meyerhoff, Jürgen, 2017. "A turbine is not only a turbine: The role of social context and fairness characteristics for the local acceptance of wind power," Energy Policy, Elsevier, vol. 107(C), pages 300-308.
    12. González-Longatt, F. & Wall, P. & Terzija, V., 2012. "Wake effect in wind farm performance: Steady-state and dynamic behavior," Renewable Energy, Elsevier, vol. 39(1), pages 329-338.
    13. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    14. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    15. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2016. "The feasible onshore wind energy potential in Baden-Württemberg: A bottom-up methodology considering socio-economic constraints," Renewable Energy, Elsevier, vol. 96(PA), pages 662-675.
    16. Lee, Amy H.I. & Chen, Hsing Hung & Kang, He-Yau, 2009. "Multi-criteria decision making on strategic selection of wind farms," Renewable Energy, Elsevier, vol. 34(1), pages 120-126.
    17. McKenna, R. & Hollnaicher, S. & Ostman v. d. Leye, P. & Fichtner, W., 2015. "Cost-potentials for large onshore wind turbines in Europe," Energy, Elsevier, vol. 83(C), pages 217-229.
    18. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    19. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renata Marks-Bielska & Stanisław Bielski & Katarzyna Pik & Krystyna Kurowska, 2020. "The Importance of Renewable Energy Sources in Poland’s Energy Mix," Energies, MDPI, vol. 13(18), pages 1-23, September.
    2. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
    4. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    5. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    7. Przemysław Kaszyński & Aleksandra Komorowska & Jacek Kamiński, 2023. "Revisiting Market Power in the Polish Power System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    8. Wyrwa, Artur & Suwała, Wojciech & Pluta, Marcin & Raczyński, Maciej & Zyśk, Janusz & Tokarski, Stanisław, 2022. "A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system," Energy, Elsevier, vol. 239(PE).
    9. Peri, Erez & Tal, Alon, 2021. "Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis," Energy Policy, Elsevier, vol. 155(C).
    10. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    11. Justyna Zalewska & Krzysztof Damaziak & Jerzy Malachowski, 2021. "An Energy Efficiency Estimation Procedure for Small Wind Turbines at Chosen Locations in Poland," Energies, MDPI, vol. 14(12), pages 1-18, June.
    12. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    13. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    15. Marcin Pluta & Artur Wyrwa & Wojciech Suwała & Janusz Zyśk & Maciej Raczyński & Stanisław Tokarski, 2020. "A Generalized Unit Commitment and Economic Dispatch Approach for Analysing the Polish Power System under High Renewable Penetration," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    2. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    3. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    4. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2016. "The feasible onshore wind energy potential in Baden-Württemberg: A bottom-up methodology considering socio-economic constraints," Renewable Energy, Elsevier, vol. 96(PA), pages 662-675.
    5. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. Jung, Christopher & Schindler, Dirk, 2022. "On the influence of wind speed model resolution on the global technical wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    9. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    10. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    11. Suškevičs, M. & Eiter, S. & Martinat, S. & Stober, D. & Vollmer, E. & de Boer, C.L. & Buchecker, M., 2019. "Regional variation in public acceptance of wind energy development in Europe: What are the roles of planning procedures and participation?," Land Use Policy, Elsevier, vol. 81(C), pages 311-323.
    12. Karakislak, Irmak & Schneider, Nina, 2023. "The mayor said so? The impact of local political figures and social norms on local responses to wind energy projects," Energy Policy, Elsevier, vol. 176(C).
    13. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    14. Manuel Gardt & Tom Broekel & Philipp Gareis, 2021. "Blowing against the winds of change? The relationship between anti-wind initiatives and wind turbines in Germany," Papers in Evolutionary Economic Geography (PEEG) 2119, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    15. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    16. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    17. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    18. Leonie Grau & Christopher Jung & Dirk Schindler, 2017. "On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany," Sustainability, MDPI, vol. 9(7), pages 1-11, July.
    19. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    20. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:109:y:2019:i:c:p:514-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.