IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp680-685.html
   My bibliography  Save this article

Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst

Author

Listed:
  • Amani, H.
  • Ahmad, Z.
  • Hameed, B.H.

Abstract

Novel mixed metal oxide catalyst Ca3.5xZr0.5yAlxO3 was synthesized through the coprecipitation of metal hydroxides. The textural, morphological, and surface properties of the synthesized catalysts were characterized via Brunauer–Emmett–Teller method, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The catalytic performance of the as-synthesized catalyst series was evaluated during the transesterification of cooking palm oil with methanol to produce fatty acid methyl esters (FAME). The influence of different parameters, including the calcination temperature (300–700 °C), methanol to oil molar ratio (6:1–25:1), catalyst amount (0.5–6.5 wt%), reaction time (0.5–12 h) and temperature (70–180 °C), on the process was thoroughly investigated. The metal oxide composite catalyst with a Ca:Zr ratio of 7:1 showed good catalytic activity toward methyl esters. Over 87% of FAME content was obtained when the methanol to oil molar ratio was 12:1, reaction temperature 150 °C, reaction time 5 h and 2.5 wt% of catalyst loading. The catalyst could also be reused for over four cycles.

Suggested Citation

  • Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:680-685
    DOI: 10.1016/j.renene.2014.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moser, Bryan R., 2011. "Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean and sunflower oils," Renewable Energy, Elsevier, vol. 36(4), pages 1221-1226.
    2. Patel, Anjali & Brahmkhatri, Varsha & Singh, Namita, 2013. "Biodiesel production by esterification of free fatty acid over sulfated zirconia," Renewable Energy, Elsevier, vol. 51(C), pages 227-233.
    3. Janulis, P., 2004. "Reduction of energy consumption in biodiesel fuel life cycle," Renewable Energy, Elsevier, vol. 29(6), pages 861-871.
    4. Zanette, Andréia F. & Barella, Rodrigo A. & Pergher, Sibele B.C. & Treichel, Helen & Oliveira, Débora & Mazutti, Marcio A. & Silva, Edson A. & Oliveira, J. Vladimir, 2011. "Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts," Renewable Energy, Elsevier, vol. 36(2), pages 726-731.
    5. Noiroj, Krisada & Intarapong, Pisitpong & Luengnaruemitchai, Apanee & Jai-In, Samai, 2009. "A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renewable Energy, Elsevier, vol. 34(4), pages 1145-1150.
    6. Quintella, Solange A. & Saboya, Rosana M.A. & Salmin, Davi C. & Novaes, Denise S. & Araújo, Antonio S. & Albuquerque, Monica C.G. & Cavalcante, Célio L., 2012. "Transesterificarion of soybean oil using ethanol and mesoporous silica catalyst," Renewable Energy, Elsevier, vol. 38(1), pages 136-140.
    7. Suryaputra, Wijaya & Winata, Indra & Indraswati, Nani & Ismadji, Suryadi, 2013. "Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 50(C), pages 795-799.
    8. Oliveira, João Felipe G. & Lucena, Izabelly Larissa & Saboya, Rosana M. Alves & Rodrigues, Marcelo L. & Torres, Antonio Eurico B. & Fernandes, Fabiano A. Narciso & Cavalcante, Célio L. & Parente, Expe, 2010. "Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption," Renewable Energy, Elsevier, vol. 35(11), pages 2581-2584.
    9. Jitrwung, Rujira & Verrett, Jonathan & Yargeau, Viviane, 2013. "Optimization of selected salts concentration for improved biohydrogen production from biodiesel-based glycerol using Enterobacter aerogenes," Renewable Energy, Elsevier, vol. 50(C), pages 222-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Zuraida & Lim, J.K. & Hameed, B.H., 2017. "Chromium–tungsten–manganese oxides for synthesis of fatty acid methyl ester via esterification of palm fatty acid distillate," Energy, Elsevier, vol. 141(C), pages 1989-1997.
    2. Olutoye, M.A. & Wong, S.W. & Chin, L.H. & Amani, H. & Asif, M. & Hameed, B.H., 2016. "Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst," Renewable Energy, Elsevier, vol. 86(C), pages 392-398.
    3. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    4. AlSharifi, Mariam & Znad, Hussein, 2019. "Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 136(C), pages 856-864.
    5. Marinković, Dalibor M. & Stanković, Miroslav V. & Veličković, Ana V. & Avramović, Jelena M. & Miladinović, Marija R. & Stamenković, Olivera O. & Veljković, Vlada B. & Jovanović, Dušan M., 2016. "Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1387-1408.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    2. Jaiyen, Siyada & Naree, Thikumporn & Ngamcharussrivichai, Chawalit, 2015. "Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel," Renewable Energy, Elsevier, vol. 74(C), pages 433-440.
    3. de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.
    4. Farooq, Muhammad & Ramli, Anita & Naeem, Abdul, 2015. "Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones," Renewable Energy, Elsevier, vol. 76(C), pages 362-368.
    5. Shi, Guoliang & Yu, Feng & Wang, Yan & Pan, Dahai & Wang, Huigang & Li, Ruifeng, 2016. "A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil," Renewable Energy, Elsevier, vol. 92(C), pages 22-29.
    6. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    7. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    8. Al-Jammal, Noor & Al-Hamamre, Zayed & Alnaief, Mohammad, 2016. "Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil," Renewable Energy, Elsevier, vol. 93(C), pages 449-459.
    9. Bet-Moushoul, Elsie & Farhadi, Khalil & Mansourpanah, Yaghoub & Molaie, Rahim & Forough, Mehrdad & Nikbakht, Ali Mohammad, 2016. "Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 12-21.
    10. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    11. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    12. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    13. Youssef Kassem & Hüseyin Çamur & Ebaa Alassi, 2020. "Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel," Energies, MDPI, vol. 13(16), pages 1-25, August.
    14. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Hafiz Waqas Kamran, 2021. "Climate Change and Energy Consumption Patterns in Thailand: Time Trends During 1988-2013," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 571-576.
    15. Garcez, Catherine Aliana Gucciardi & Vianna, João Nildo de Souza, 2009. "Brazilian Biodiesel Policy: Social and environmental considerations of sustainability," Energy, Elsevier, vol. 34(5), pages 645-654.
    16. Russi, Daniela, 2008. "An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone?," Energy Policy, Elsevier, vol. 36(3), pages 1169-1180, March.
    17. Mohamed, Mohamed Mokhatr & Bayoumy, W.A. & El-Faramawy, Hossam & El-Dogdog, Wagdy & Mohamed, Ashraf A., 2020. "A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: Kinetic and thermal studies," Renewable Energy, Elsevier, vol. 160(C), pages 450-464.
    18. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    19. Farobie, Obie & Sasanami, Kazuma & Matsumura, Yukihiko, 2015. "A novel spiral reactor for biodiesel production in supercritical ethanol," Applied Energy, Elsevier, vol. 147(C), pages 20-29.
    20. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:680-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.