IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013526.html
   My bibliography  Save this article

Solar cooking technology in India: Identification and prioritization of potential challenges

Author

Listed:
  • Thakur, Akshay
  • Kumar, Rajat
  • Dwivedi, Ankur
  • Goel, Varun

Abstract

To meet their energy demands, many households and institutions still rely on conventional fuel-based energy systems; especially in developing countries, besides several harmful health and environmental repercussions. Solar energy offers a viable renewable solution to such issues and can also be used for cooking purposes. Despite several positive economic, environmental, and qualitative advantages associated with solar cooking technology, its adoption statistics are still unsatisfactory, contrary to expectations. This work takes an opportunity to identify various potential challenges hindering its social acceptance, and hence; affecting the country's pace towards its sustainable development goals considerably. Further, the identified barriers are prioritized systematically by elucidating the general societal outlooks through the application of multiple attribute decision-making (MADM) tools. The decision-making trial and evaluation laboratory (DEMATEL) scheme is utilized for the barrier prioritization based on computed priority weights. Based on the analysis, inadequate promotional policies are identified as the most significant factor responsible for poor market deployment statistics. Also, various suggestions have been contributed to deal with several identified potential barriers in promoting solar-based cooking strategies in the Indian perspective.

Suggested Citation

  • Thakur, Akshay & Kumar, Rajat & Dwivedi, Ankur & Goel, Varun, 2023. "Solar cooking technology in India: Identification and prioritization of potential challenges," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013526
    DOI: 10.1016/j.renene.2023.119437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
    2. Abd-Elhady, M.S. & Abd-Elkerim, A.N.A. & Ahmed, Seif A. & Halim, M.A. & Abu-Oqual, Ahmed, 2020. "Study the thermal performance of solar cookers by using metallic wires and nanographene," Renewable Energy, Elsevier, vol. 153(C), pages 108-116.
    3. Sharma, Ashutosh & Chauhan, Ranchan & Singh, Tej & Kumar, Anil & Kumar, Raj & Kumar, Anil & Sethi, Muneesh, 2017. "Optimizing discrete V obstacle parameters using a novel Entropy-VIKOR approach in a solar air flow channel," Renewable Energy, Elsevier, vol. 106(C), pages 310-320.
    4. Pohekar, S.D. & Ramachandran, M., 2006. "Utility assessment of parabolic solar cooker as a domestic cooking device in India," Renewable Energy, Elsevier, vol. 31(11), pages 1827-1838.
    5. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    6. Otte, Pia Piroschka, 2013. "Solar cookers in developing countries—What is their key to success?," Energy Policy, Elsevier, vol. 63(C), pages 375-381.
    7. Saxena, Abhishek & Cuce, Erdem & Tiwari, G.N. & Kumar, Avnish, 2020. "Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research," Energy, Elsevier, vol. 206(C).
    8. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    9. Pohekar, S.D. & Ramachandran, M., 2004. "Multi-criteria evaluation of cooking energy alternatives for promoting parabolic solar cooker in India," Renewable Energy, Elsevier, vol. 29(9), pages 1449-1460.
    10. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.
    12. Indora, Sunil & Kandpal, Tara C., 2019. "A framework for analyzing impact of potential financial/fiscal incentives for promoting institutional solar cooking in India," Renewable Energy, Elsevier, vol. 143(C), pages 1531-1543.
    13. Conor J. Newton & Ayalvadi Ganesh & Henry W. J. Reeve, 2023. "Asymptotic Optimality for Decentralised Bandits," Dynamic Games and Applications, Springer, vol. 13(1), pages 307-325, March.
    14. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1994. "Effect of wind on the thermal performance of a parabolloid concentrator solar cooker," Renewable Energy, Elsevier, vol. 4(3), pages 333-337.
    15. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    16. Pohekar, S.D. & Ramachandran, M., 2006. "Multi-criteria evaluation of cooking devices with special reference to utility of parabolic solar cooker (PSC) in India," Energy, Elsevier, vol. 31(8), pages 1215-1227.
    17. Zheng-Xia He & Shi-Chun Xu & Qin-Bin Li & Bin Zhao, 2018. "Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach," Sustainability, MDPI, vol. 10(1), pages 1-30, January.
    18. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    19. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    20. Mahadevan, Meera & Meeks, Robyn & Yamano, Takashi, 2023. "Reducing information barriers to solar adoption: Experimental evidence from India," Energy Economics, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    2. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.
    4. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
    5. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    6. Indora, Sunil & Kandpal, Tara C., 2019. "Financial appraisal of using Scheffler dish for steam based institutional solar cooking in India," Renewable Energy, Elsevier, vol. 135(C), pages 1400-1411.
    7. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
    8. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    9. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    10. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    11. Regattieri, Alberto & Piana, Francesco & Bortolini, Marco & Gamberi, Mauro & Ferrari, Emilio, 2016. "Innovative portable solar cooker using the packaging waste of humanitarian supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 319-326.
    12. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    14. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    16. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2022. "Comparison of net-metering with peer-to-peer models using the grid and electric vehicles for the electricity exchange," Applied Energy, Elsevier, vol. 310(C).
    17. Lahkar, Pranab J. & Bhamu, Rajesh K. & Samdarshi, S.K., 2012. "Enabling inter-cooker thermal performance comparison based on cooker opto-thermal ratio (COR)," Applied Energy, Elsevier, vol. 99(C), pages 491-495.
    18. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    19. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    20. Ansari, Md. Fahim & Kharb, Ravinder Kumar & Luthra, Sunil & Shimmi, S.L. & Chatterji, S., 2013. "Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 163-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.