IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp70-82.html
   My bibliography  Save this article

Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker

Author

Listed:
  • Wang, Hai
  • Huang, Jin
  • Song, Mengjie
  • Yan, Jian

Abstract

To facilitate building integration with solar cooker for household, a solar cooker based on a fixed-focus Fresnel lens solar concentrator/cavity receiver system was proposed. To increase the system optical efficiency, the cavity receiver with bottom reflective cone was used as a fixed receiver. Expecting to optimize the system and receiver of better optical performance, the effects of receiver parameters on it were studied. To evaluate the effects, a significance test of key factors was conducted. Comparative analysis of fixed-focus food cooking system was undertaken. The analysis shows that average optical efficiencies using cavity receiver with bottom reflective cone of spherical, cylindrical, conical are 72.23%, 68.37% and 76.40%, respectively, while that of their corresponding conventional cavity receivers are 68.49%, 31.91% and 74.61%. The former significantly increased 3.74%, 36.46% and 1.79%, respectively. Moreover, cavity receiver with bottom reflective cone angle 90° is able to hold a higher amount of incoming energy from concentrator, compared to other three angles. Increasing the bottom reflective cone reflectivity and cavity receiver surface absorptivity can improve optical efficiency. In addition, the cavity receiver surface absorptivity and concentrated sunlight incidence angle have the most significant influence on the optical efficiency and flux uniformity, respectively. The conical cavity receiver with bottom reflective cone is the most suitable one for system. This work is expected to be useful for further optimization of solar concentrator/cavity receiver system.

Suggested Citation

  • Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:70-82
    DOI: 10.1016/j.apenergy.2018.12.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191831910X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haixiang Zang & Mian Guo & Zhinong Wei & Guoqiang Sun, 2016. "Determination of the Optimal Tilt Angle of Solar Collectors for Different Climates of China," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    4. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
    5. Gunasekar, N. & Mohanraj, M. & Velmurugan, V., 2015. "Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps," Energy, Elsevier, vol. 93(P1), pages 908-922.
    6. Valmiki, M.M. & Li, Peiwen & Heyer, Javier & Morgan, Matthew & Albinali, Abdulla & Alhamidi, Kamal & Wagoner, Jeremy, 2011. "A novel application of a Fresnel lens for a solar stove and solar heating," Renewable Energy, Elsevier, vol. 36(5), pages 1614-1620.
    7. Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
    8. Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
    9. Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2017. "A comprehensive review of Scheffler solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 890-898.
    10. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    11. Azimoh, Chukwuma Leonard & Wallin, Fredrik & Klintenberg, Patrik & Karlsson, Björn, 2014. "An assessment of unforeseen losses resulting from inappropriate use of solar home systems in South Africa," Applied Energy, Elsevier, vol. 136(C), pages 336-346.
    12. Hai Wang & Jin Huang & Mengjie Song & Yanxin Hu & Yunfeng Wang & Zijian Lu, 2018. "Simulation and Experimental Study on the Optical Performance of a Fixed-Focus Fresnel Lens Solar Concentrator Using Polar-Axis Tracking," Energies, MDPI, vol. 11(4), pages 1-16, April.
    13. Wang, Jun & Yang, Song & Jiang, Chuan & Yan, Qianwen & Lund, Peter D., 2017. "A novel 2-stage dish concentrator with improved optical performance for concentrating solar power plants," Renewable Energy, Elsevier, vol. 108(C), pages 92-97.
    14. Ruelas, José & Velázquez, Nicolás & Cerezo, Jesús, 2013. "A mathematical model to develop a Scheffler-type solar concentrator coupled with a Stirling engine," Applied Energy, Elsevier, vol. 101(C), pages 253-260.
    15. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    16. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    17. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2017. "Proposal and assessment of a solar thermoelectric generation system characterized by Fresnel lens, cavity receiver and heat pipe," Energy, Elsevier, vol. 141(C), pages 215-238.
    18. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    19. Lv, Yuexia & Si, Pengfei & Rong, Xiangyang & Yan, Jinyue & Feng, Ya & Zhu, Xiaohong, 2018. "Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection," Applied Energy, Elsevier, vol. 219(C), pages 11-19.
    20. Abdelghani-Idrissi, M.A. & Khalfallaoui, S. & Seguin, D. & Vernières-Hassimi, L. & Leveneur, S., 2018. "Solar tracker for enhancement of the thermal efficiency of solar water heating system," Renewable Energy, Elsevier, vol. 119(C), pages 79-94.
    21. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    2. Henry Wasajja & Saqr A. A. Al-Muraisy & Antonella L. Piaggio & Pamela Ceron-Chafla & Purushothaman Vellayani Aravind & Henri Spanjers & Jules B. van Lier & Ralph E. F. Lindeboom, 2021. "Improvement of Biogas Quality and Quantity for Small-Scale Biogas-Electricity Generation Application in off-Grid Settings: A Field-Based Study," Energies, MDPI, vol. 14(11), pages 1-20, May.
    3. Palanikumar, G. & Shanmugan, S. & Chithambaram, V. & Gorjian, Shiva & Pruncu, Catalin I. & Essa, F.A. & Kabeel, A.E. & Panchal, Hitesh & Janarthanan, B. & Ebadi, Hossein & Elsheikh, Ammar H. & Selvara, 2021. "Thermal investigation of a solar box-type cooker with nanocomposite phase change materials using flexible thermography," Renewable Energy, Elsevier, vol. 178(C), pages 260-282.
    4. Farhan Lafta Rashid & Mudhar A. Al-Obaidi & Ali Jafer Mahdi & Arman Ameen, 2024. "Advancements in Fresnel Lens Technology across Diverse Solar Energy Applications: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-40, January.
    5. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    6. Hosseinzadeh, Mohammad & Faezian, Ali & Mirzababaee, Seyyed Mahdi & Zamani, Hosein, 2020. "Parametric analysis and optimization of a portable evacuated tube solar cooker," Energy, Elsevier, vol. 194(C).
    7. Hai Wang & Yanxin Hu & Jinqing Peng & Mengjie Song & Haoteng Li, 2021. "Effects of Receiver Parameters on Solar Flux Distribution for Triangle Cavity Receiver in the Fixed Linear-Focus Fresnel Lens Solar Concentrator," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    8. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    3. Yassir A. Alamri & Saad Mahmoud & Raya Al-Dadah & Shivangi Sharma & J. N. Roy & Yulong Ding, 2021. "Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study," Energies, MDPI, vol. 14(14), pages 1-18, July.
    4. Yan, Jian & Peng, You-duo & Cheng, Zi-ran, 2018. "Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system," Renewable Energy, Elsevier, vol. 129(PA), pages 431-445.
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    7. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    9. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    10. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    11. Yan, Jian & Liu, Yong-xiang & Peng, You-Duo, 2022. "Study on the optical performance of novel dish solar concentrator formed by rotating array of plane mirrors with the same size," Renewable Energy, Elsevier, vol. 195(C), pages 416-430.
    12. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    13. Zhu, Shunmin & Yu, Guoyao & Ma, Ying & Cheng, Yangbin & Wang, Yalei & Yu, Shaofei & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2019. "A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy," Applied Energy, Elsevier, vol. 242(C), pages 1248-1258.
    14. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    15. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    16. Navendu Misra & Abhishek Anand & Saurabh Pandey & Karunesh Kant & Amritanshu Shukla & Atul Sharma, 2023. "Box-Type Solar Cookers: An Overview of Technological Advancement, Energy, Environmental, and Economic Benefits," Energies, MDPI, vol. 16(4), pages 1-32, February.
    17. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    18. Zhang, Yanping & Xiao, Hu & Zou, Chongzhe & Falcoz, Quentin & Neveu, Pierre, 2020. "Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe," Energy, Elsevier, vol. 193(C).
    19. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    20. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:70-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.