IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp1050-1064.html
   My bibliography  Save this article

Biofuels or not biofuels? The “Nexus Thinking” in land suitability analysis for energy crops

Author

Listed:
  • Viccaro, Mauro
  • Caniani, Donatella
  • Masi, Salvatore
  • Romano, Severino
  • Cozzi, Mario

Abstract

Biofuels play a key role in the decarbonization process of the transport sector contributing to climate change mitigation, energy security and rural development. However, the competition between energy and food in the use of resources, such as land, water and energy input, requires a robust and integrated methodological framework to promote a holistic sustainable resource management. Here, we propose a land suitability model for energy crops to analyze the dynamic interrelationships between land, water and energy, with the aim of promoting the efficient use of resources in the bioenergy context. The model was developed using multi-criteria decision analysis (MCDA) techniques in geographic information systems (GIS) integrated with the Water-Energy-Food nexus approach. The model was tested for the Basilicata region (southern Italy), comparing two energy crops: (i) rapeseed (Brassica napus L.) and (ii) cardoon (Cynara cardunculus L.). The application to the case study shows the importance of the land suitability analysis to identify the most suitable crop in a given territory, while the nexus spatial analysis for locating the suitable areas where a more efficient use of water, energy and land resources is reached. The results revealed also that the use of irrigation water would allow greater use efficiency of the other resources, such as land and energy, an aspect not to be underestimated in the energy, land and agricultural planning processes. The research work contributes to the debate on the sustainability of bioenergy, so that they can represent a sustainable solution to the energy issue and climate change.

Suggested Citation

  • Viccaro, Mauro & Caniani, Donatella & Masi, Salvatore & Romano, Severino & Cozzi, Mario, 2022. "Biofuels or not biofuels? The “Nexus Thinking” in land suitability analysis for energy crops," Renewable Energy, Elsevier, vol. 187(C), pages 1050-1064.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:1050-1064
    DOI: 10.1016/j.renene.2022.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    2. Roger Cremades & Hermine Mitter & Nicu Constantin Tudose & Anabel Sanchez-Plaza & Anil Graves & Annelies Broekman & Steffen Bender & Carlo Giupponi & Phoebe Koundouri & Muhamad Bahri & Sorin Cheval & , 2019. "Ten principles to integrate the water-energy-land nexus with climate services for co-producing local and regional integrated assessments," DEOS Working Papers 1915, Athens University of Economics and Business.
    3. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Li, Yongping, 2021. "Economic modeling of national energy, water and air pollution nexus in China under changing climate conditions," Renewable Energy, Elsevier, vol. 170(C), pages 375-386.
    6. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    7. Leirpoll, Malene Eldegard & Næss, Jan Sandstad & Cavalett, Otavio & Dorber, Martin & Hu, Xiangping & Cherubini, Francesco, 2021. "Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland," Renewable Energy, Elsevier, vol. 168(C), pages 45-56.
    8. Tapia, John Frederick D. & Doliente, Stephen S. & Samsatli, Sheila, 2021. "How much land is available for sustainable palm oil?," Land Use Policy, Elsevier, vol. 102(C).
    9. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.
    10. Vastola, Antonella & Zdruli, Pandi & D’Amico, Mario & Pappalardo, Gioacchino & Viccaro, Mauro & Di Napoli, Francesco & Cozzi, Mario & Romano, Severino, 2017. "A comparative multidimensional evaluation of conservation agriculture systems: A case study from a Mediterranean area of Southern Italy," Land Use Policy, Elsevier, vol. 68(C), pages 326-333.
    11. Khan, Muhammad Tariq Iqbal & Ali, Qamar & Ashfaq, Muhammad, 2018. "The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan," Renewable Energy, Elsevier, vol. 118(C), pages 437-451.
    12. Azarova, Valeriya & Mier, Mathias, 2021. "Market Stability Reserve under exogenous shock: The case of COVID-19 pandemic," Applied Energy, Elsevier, vol. 283(C).
    13. Helliwell, Richard, 2018. "Where did the marginal land go? Farmers perspectives on marginal land and its implications for adoption of dedicated energy crops," Energy Policy, Elsevier, vol. 117(C), pages 166-172.
    14. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    15. Ji, Ling & Zhang, Beibei & Huang, Guohe & Wang, Peng, 2020. "A novel multi-stage fuzzy stochastic programming for electricity system structure optimization and planning with energy-water nexus - A case study of Tianjin, China," Energy, Elsevier, vol. 190(C).
    16. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    17. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    18. Qamruzzaman, Md, 2022. "Nexus between renewable energy, foreign direct investment, and agro-productivity: The mediating role of carbon emission," Renewable Energy, Elsevier, vol. 184(C), pages 526-540.
    19. Mauro Viccaro & Mario Cozzi & Donatella Caniani & Salvatore Masi & Ignazio M. Mancini & Marianna Caivano & Severino Romano, 2017. "Wastewater Reuse: An Economic Perspective to Identify Suitable Areas for Poplar Vegetation Filter Systems for Energy Production," Sustainability, MDPI, vol. 9(12), pages 1-14, November.
    20. Viccaro, Mauro & Rocchi, Benedetto & Cozzi, Mario & Romano, Severino, 2018. "SAM multipliers and subsystems: structural analysis of the Basilicata’s agri-food sector," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 7(1), April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yingjie & Zhu, Aikong & Wang, Jingya & Xia, Ke & Liu, Zhenglan, 2023. "Study on the low-carbon development under a resources-dependent framework of water-land -energy utilization: Evidence from the Yellow River Basin, China," Energy, Elsevier, vol. 280(C).
    2. Somayeh Rezaei Kalvani & Fulvio Celico, 2024. "Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review," Sustainability, MDPI, vol. 16(7), pages 1-18, March.
    3. Somayeh Rezaei Kalvani & Fulvio Celico, 2023. "The Water–Energy–Food Nexus in European Countries: A Review and Future Perspectives," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    2. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    3. Viccaro, Mauro & Romano, Severino & Prete, Carmelina & Cozzi, Mario, 2021. "Rural planning? An integrated dynamic model for assessing quality of life at a local scale," Land Use Policy, Elsevier, vol. 111(C).
    4. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    5. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Wang, Wei & Jing, Rui & Zhao, Yingru & Zhang, Chuan & Wang, Xiaonan, 2020. "A load-complementarity combined flexible clustering approach for large-scale urban energy-water nexus optimization," Applied Energy, Elsevier, vol. 270(C).
    8. Yinwen Huang & Dechun Huang, 2023. "Decoupling Economic Growth from Embodied Water–Energy–Food Consumption Based on a Modified MRIO Model: A Case Study of the Yangtze River Delta Region in China," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    9. Ju, Yiyi, 2019. "Revealing the bilateral dependencies and policy implication of food production of Japan and China: From the perspective of Food-Energy-Water nexus," Ecological Modelling, Elsevier, vol. 391(C), pages 29-39.
    10. Gengyuan Liu & Asim Nawab & Fanxin Meng & Aamir Mehmood Shah & Xiaoya Deng & Yan Hao & Biagio F. Giannetti & Feni Agostinho & Cecília M. V. B. Almeida & Marco Casazza, 2021. "Understanding the Sustainability of the Energy–Water–Land Flow Nexus in Transnational Trade of the Belt and Road Countries," Energies, MDPI, vol. 14(19), pages 1-19, October.
    11. Pulighe, Giuseppe & Pirelli, Tiziana, 2023. "Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    13. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Maria Maddalena Tortorella & Senatro Di Leo & Carmelina Cosmi & Patrícia Fortes & Mauro Viccaro & Mario Cozzi & Filomena Pietrapertosa & Monica Salvia & Severino Romano, 2020. "A Methodological Integrated Approach to Analyse Climate Change Effects in Agri-Food Sector: The TIMES Water-Energy-Food Module," IJERPH, MDPI, vol. 17(21), pages 1-21, October.
    15. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    16. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    17. Traverso L. & Mazzoli E. & Miller C. & Pulighe G. & Perelli C. & Morese M. M. & Branca G., 2021. "Cost Benefit and Risk Analysis of Low iLUC Bioenergy Production in Europe Using Monte Carlo Simulation," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    19. Salim Almaliki & Nasim Monjezi, 2021. "Using new computer based techniques to optimise energy consumption in agricultural land levelling," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(4), pages 149-163.
    20. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:1050-1064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.