IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6311-d649176.html
   My bibliography  Save this article

Understanding the Sustainability of the Energy–Water–Land Flow Nexus in Transnational Trade of the Belt and Road Countries

Author

Listed:
  • Gengyuan Liu

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Asim Nawab

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Fanxin Meng

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Aamir Mehmood Shah

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Xiaoya Deng

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Yan Hao

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Biagio F. Giannetti

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Post-Graduation Program in Production Engineering, Paulista University, São Paulo 04026-002, Brazil)

  • Feni Agostinho

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Post-Graduation Program in Production Engineering, Paulista University, São Paulo 04026-002, Brazil)

  • Cecília M. V. B. Almeida

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Post-Graduation Program in Production Engineering, Paulista University, São Paulo 04026-002, Brazil)

  • Marco Casazza

    (Department of Science and Technology, University of Naples ‘Parthenope’, Centro Direzionale, Isola C4, 80143 Naples, Italy)

Abstract

Increasing economic and population growth has put immense pressure on energy, water and land resources to satisfy national and supra-national demand. Through trade, a large proportion of such a demand is fulfilled. With trade as one of its key priorities, the China Belt and Road Initiative is a long-term transcontinental investment program. The initiative gained significant attention due to greater opportunities for economic development, large population and different levels of resource availability. The nexus approach has appeared as a new viewpoint in discussions on balancing the competing sectoral demands. However, following years of work, constraints exist in the scope and focus of studies. The newly developed multi-regional input–output (MRIO) models covering the world’s economy and its use of resources permit a comprehensive analysis of resource usage by production and consumption at different levels, and bring more knowledge about resource nexus problems. Using the MRIO model, this work simultaneously tracks energy, water and land use flows and investigates the transnational resource nexus. A nexus strength indicator is proposed which depends on ternary diagrams to grade countries based on their combined resources’ use and sectoral weighting. Equal sectoral weighting is assigned. The analysis presented a sectorally balanced nexus approach. Findings support existing work by recognizing energy, water and land as the robust transnational connections, from both production and consumption points of view. Resource nexus issues differ from country to country owing to inequalities in industrial set-up, preferences in economic policy and resource endowments. The paper outlines how key resource nexus problems can be identified and prioritized in view of alternative and often opposing interests.

Suggested Citation

  • Gengyuan Liu & Asim Nawab & Fanxin Meng & Aamir Mehmood Shah & Xiaoya Deng & Yan Hao & Biagio F. Giannetti & Feni Agostinho & Cecília M. V. B. Almeida & Marco Casazza, 2021. "Understanding the Sustainability of the Energy–Water–Land Flow Nexus in Transnational Trade of the Belt and Road Countries," Energies, MDPI, vol. 14(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6311-:d:649176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    2. Wang, Saige & Chen, Bin, 2016. "Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region," Applied Energy, Elsevier, vol. 178(C), pages 773-783.
    3. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    4. Leonie Wenz & Sven Norman Willner & Alexander Radebach & Robert Bierkandt & Jan Christoph Steckel & Anders Levermann, 2015. "Regional And Sectoral Disaggregation Of Multi-Regional Input-Output Tables - A Flexible Algorithm," Economic Systems Research, Taylor & Francis Journals, vol. 27(2), pages 194-212, June.
    5. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    6. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    7. Justin Yifu Lin, 2015. ""One Belt and One Road" and Free Trade Zones¡ªChina's New Opening-up Initiatives," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 10(4), pages 585-590, December.
    8. Sharmina, Maria & Hoolohan, Claire & Bows-Larkin, Alice & Burgess, Paul J. & Colwill, James & Gilbert, Paul & Howard, David & Knox, Jerry & Anderson, Kevin, 2016. "A nexus perspective on competing land demands: Wider lessons from a UK policy case study," Environmental Science & Policy, Elsevier, vol. 59(C), pages 74-84.
    9. Mark Howells & H-Holger Rogner, 2014. "Assessing integrated systems," Nature Climate Change, Nature, vol. 4(4), pages 246-247, April.
    10. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    11. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    12. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    13. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    14. Wichelns, Dennis, 2017. "The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?," Environmental Science & Policy, Elsevier, vol. 69(C), pages 113-123.
    15. Bassel T. Daher & Rabi H. Mohtar, 2015. "Water-energy-food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 748-771, September.
    16. Manfred Lenzen & Richard Wood & Thomas Wiedmann, 2010. "Uncertainty Analysis For Multi-Region Input-Output Models - A Case Study Of The Uk'S Carbon Footprint," Economic Systems Research, Taylor & Francis Journals, vol. 22(1), pages 43-63.
    17. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zhang & Meixia Ren & Xin Lu & Yu Li & Jianjun Cao, 2022. "Effect of the Belt and Road Initiatives on Trade and Its Related LUCC and Ecosystem Services of Central Asian Nations," Land, MDPI, vol. 11(6), pages 1-18, June.
    2. Lin, Zekun & Meng, Fanxin & Wang, Dongfang & Liao, Danqi & Sun, Yutong & Hou, Jiaqi & Liu, Gengyuan & Giannetti, Biagio Fernando & Agostinho, Feni & Almeida, Cecília M.V.B., 2023. "Unfolding carbon inequality across Belt and Road Initiative countries and regions under a global trade network," Ecological Modelling, Elsevier, vol. 482(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    2. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    3. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    4. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    5. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    6. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    7. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    8. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    9. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    10. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    11. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    12. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    13. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    14. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    15. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    16. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    17. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    18. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    19. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    20. Sager, Lutz, 2019. "Income inequality and carbon consumption: Evidence from Environmental Engel curves," Energy Economics, Elsevier, vol. 84(S1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6311-:d:649176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.