IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp128-142.html
   My bibliography  Save this article

How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power

Author

Listed:
  • Watts, David
  • Durán, Pablo
  • Flores, Yarela

Abstract

This paper assesses the impact of the El Niño Southern Oscillation (ENSO) on the wind speed, energy production, as well as its impact on the value of potential wind projects at different sites across Chile. The study applies cyclostationary empirical orthogonal function (CSEOF) analysis to isolate the ENSO influence on the wind speed, and therefore on the energy output of nearly all current and potential wind farms in Chile. Finally, a review of techno-economical parameters is made to assess the economic impact of an ENSO event occurring at different years in the lifetime of a wind energy project. The main contribution of this work is to establish the locations in Chile where this climatic oscillation is important for the system planning, the energy forecasting and the risk assessment.

Suggested Citation

  • Watts, David & Durán, Pablo & Flores, Yarela, 2017. "How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power," Renewable Energy, Elsevier, vol. 103(C), pages 128-142.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:128-142
    DOI: 10.1016/j.renene.2016.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    2. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    3. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    4. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    5. Rehman, S & Halawani, T.O & Mohandes, M, 2003. "Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 28(4), pages 573-583.
    6. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    7. Kaldellis, J. K. & Gavras, Th. J., 2000. "The economic viability of commercial wind plants in Greece A complete sensitivity analysis," Energy Policy, Elsevier, vol. 28(8), pages 509-517, July.
    8. Gass, V. & Strauss, F. & Schmidt, J. & Schmid, E., 2011. "Assessing the effect of wind power uncertainty on profitability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2677-2683, August.
    9. Diaf, S. & Notton, G., 2013. "Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 379-390.
    10. Watts, David & Albornoz, Constanza & Watson, Andrea, 2015. "Clean Development Mechanism (CDM) after the first commitment period: Assessment of the world׳s portfolio and the role of Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1176-1189.
    11. Kelleher, J. & Ringwood, J.V., 2009. "A computational tool for evaluating the economics of solar and wind microgeneration of electricity," Energy, Elsevier, vol. 34(4), pages 401-409.
    12. Caralis, George & Diakoulaki, Danae & Yang, Peijin & Gao, Zhiqiu & Zervos, Arthouros & Rados, Kostas, 2014. "Profitability of wind energy investments in China using a Monte Carlo approach for the treatment of uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 224-236.
    13. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    14. Schallenberg-Rodriguez, Julieta, 2013. "A methodological review to estimate techno-economical wind energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 272-287.
    15. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    16. Friedman, Peter D., 2010. "Evaluating economic uncertainty of municipal wind turbine projects," Renewable Energy, Elsevier, vol. 35(2), pages 484-489.
    17. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2015. "Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 319-337.
    18. Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2009. "Assessment of centralized grid connected wind power cost in coastal area of Pakistan," Renewable Energy, Elsevier, vol. 34(2), pages 369-373.
    19. Soito, João Leonardo da Silva & Freitas, Marcos Aurélio Vasconcelos, 2011. "Amazon and the expansion of hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3165-3177, August.
    20. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    21. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalez-Salazar, Miguel & Poganietz, Witold Roger, 2021. "Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America," Renewable Energy, Elsevier, vol. 174(C), pages 453-467.
    2. Aliashim Albani & Mohd Zamri Ibrahim & Kim Hwang Yong, 2018. "Influence of the ENSO and Monsoonal Season on Long-Term Wind Energy Potential in Malaysia," Energies, MDPI, vol. 11(11), pages 1-18, November.
    3. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    4. Vega-Coloma, Mabel & Zaror, Claudio A., 2018. "Environmental impact profile of electricity generation in Chile: A baseline study over two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 154-167.
    5. Ramirez Camargo, Luis & Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang, 2019. "Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile," Applied Energy, Elsevier, vol. 250(C), pages 1548-1558.
    6. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
    2. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    3. Gass, V. & Strauss, F. & Schmidt, J. & Schmid, E., 2011. "Assessing the effect of wind power uncertainty on profitability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2677-2683, August.
    4. McKenna, R. & Hollnaicher, S. & Ostman v. d. Leye, P. & Fichtner, W., 2015. "Cost-potentials for large onshore wind turbines in Europe," Energy, Elsevier, vol. 83(C), pages 217-229.
    5. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    6. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    7. Grassi, Stefano & Junghans, Sven & Raubal, Martin, 2014. "Assessment of the wake effect on the energy production of onshore wind farms using GIS," Applied Energy, Elsevier, vol. 136(C), pages 827-837.
    8. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    9. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    10. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    11. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    12. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    13. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    14. Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.
    15. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    16. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    17. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    18. Birgir Hrafnkelsson & Gudmundur V. Oddsson & Runar Unnthorsson, 2016. "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation," Energies, MDPI, vol. 9(4), pages 1-14, April.
    19. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    20. Cengiz Kahraman & Sezi Cevik Onar & Basar Oztaysi, 2016. "A Comparison of Wind Energy Investment Alternatives Using Interval-Valued Intuitionistic Fuzzy Benefit/Cost Analysis," Sustainability, MDPI, vol. 8(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:128-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.