IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp447-461.html
   My bibliography  Save this article

Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach

Author

Listed:
  • Siyal, Shahid Hussain
  • Mörtberg, Ulla
  • Mentis, Dimitris
  • Welsch, Manuel
  • Babelon, Ian
  • Howells, Mark

Abstract

The wind energy being a freely available and low-carbon energy source has got the focus of decision makers around the world, because wind energy systems can reduce the dependence of a nation on fossil fuels and can contribute to a sustainable development of both climate and energy. However, wind power comes with certain environmental impacts and land use constraints that should be taken into account, in order to reach main sustainability goals concerning biodiversity and ecosystem services. The Swedish national goal regarding wind energy development has been set to 30 TWh by the year 2020, of which 20 TWh should come from the on-shore wind energy resource. Therefore, wind energy development in Sweden could play an important role in achieving the future energy and environmental targets. In this regard, we assessed the wind energy potential available in Sweden using a GIS-based approach. We aimed to estimate the technical onshore wind energy potential available in Sweden by considering system performance, topographic limitations, environmental, and land use constraints in the form of two restriction scenarios. The results of this paper can draw the attention of decision makers to reach a sustainable wind energy development in Sweden. The results achieved in this paper suggest that Sweden possesses sufficient wind energy potential and land area available for wind energy installations, which can be used to meet the future renewable energy targets in Sweden.

Suggested Citation

  • Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:447-461
    DOI: 10.1016/j.energy.2015.02.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKenna, R. & Hollnaicher, S. & Fichtner, W., 2014. "Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany," Applied Energy, Elsevier, vol. 115(C), pages 103-115.
    2. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    3. Agterbosch, Susanne & Meertens, Ree M. & Vermeulen, Walter J.V., 2009. "The relative importance of social and institutional conditions in the planning of wind power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 393-405, February.
    4. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    5. Ferguson-Martin, Christopher J. & Hill, Stephen D., 2011. "Accounting for variation in wind deployment between Canadian provinces," Energy Policy, Elsevier, vol. 39(3), pages 1647-1658, March.
    6. Wu, Jie & Wang, Jianzhou & Chi, Dezhong, 2013. "Wind energy potential assessment for the site of Inner Mongolia in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 215-228.
    7. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    8. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    9. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    10. de Araujo Lima, Laerte & Bezerra Filho, Celso Rosendo, 2010. "Wind energy assessment and wind farm simulation in Triunfo – Pernambuco, Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2705-2713.
    11. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    12. George C. Ledec & Kennan W. Rapp & Roberto G. Aiello, 2011. "Greening the Wind : Environmental and Social Considerations for Wind Power Development," World Bank Publications - Books, The World Bank Group, number 2388, December.
    13. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    14. Diaf, S. & Notton, G., 2013. "Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 379-390.
    15. Pettersson, Maria & Ek, Kristina & Söderholm, Kristina & Söderholm, Patrik, 2010. "Wind power planning and permitting: Comparative perspectives from the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3116-3123, December.
    16. Nadai, Alain, 2007. ""Planning", "siting" and the local acceptance of wind power: Some lessons from the French case," Energy Policy, Elsevier, vol. 35(5), pages 2715-2726, May.
    17. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.
    18. McWilliam, M.K. & van Kooten, G.C. & Crawford, C., 2012. "A method for optimizing the location of wind farms," Renewable Energy, Elsevier, vol. 48(C), pages 287-299.
    19. Yamaguchi, Atsushi & Ishihara, Takeshi, 2014. "Assessment of offshore wind energy potential using mesoscale model and geographic information system," Renewable Energy, Elsevier, vol. 69(C), pages 506-515.
    20. Sovacool, Benjamin K., 2009. "Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity," Energy Policy, Elsevier, vol. 37(6), pages 2241-2248, June.
    21. Morales, Luis & Lang, Francisco & Mattar, Cristian, 2012. "Mesoscale wind speed simulation using CALMET model and reanalysis information: An application to wind potential," Renewable Energy, Elsevier, vol. 48(C), pages 57-71.
    22. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    23. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    24. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    2. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    3. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    4. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    5. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    6. Watson, Ian & Betts, Stephen & Rapaport, Eric, 2012. "Determining appropriate wind turbine setback distances: Perspectives from municipal planners in the Canadian provinces of Nova Scotia, Ontario, and Quebec," Energy Policy, Elsevier, vol. 41(C), pages 782-789.
    7. Atici, Kazim Baris & Simsek, Ahmet Bahadir & Ulucan, Aydin & Tosun, Mustafa Umur, 2015. "A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection," Utilities Policy, Elsevier, vol. 37(C), pages 86-96.
    8. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2016. "The feasible onshore wind energy potential in Baden-Württemberg: A bottom-up methodology considering socio-economic constraints," Renewable Energy, Elsevier, vol. 96(PA), pages 662-675.
    9. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    10. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    11. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
    12. Feng Qing & Xiaohuan Liu & Zhaoyong Jiang & Shaoda Li, 2020. "Assessment of energy strategy pressure based on geographical information system," Energy & Environment, , vol. 31(6), pages 1031-1054, September.
    13. Peri, Erez & Tal, Alon, 2021. "Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis," Energy Policy, Elsevier, vol. 155(C).
    14. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    15. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    16. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    17. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    18. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    19. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    20. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:447-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.