IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v211y2021ics0951832021001526.html
   My bibliography  Save this article

Importance of human reliability in process operation: A critical analysis

Author

Listed:
  • Zarei, Esmaeil
  • Khan, Faisal
  • Abbassi, Rouzbeh

Abstract

Chemical process industries (CPIs) work with a variety of hazardous materials in quantities which have the potential to have large health, environmental and financial impacts and as such are exposed to the risk of major accidents. The experience with accidents in this domain shows many cases which involve complex human-machine interactions. Human Reliability Analysis (HRA) has been utilized as a proactive approach to identify, model, and quantify human error highlighted as the leading cause of accidents. Consequently, researchers have actively worked on enhancing process safety and risk engineering since the '70s. However, despite its importance and practical implications for improving human reliability, there has not been a review of human reliability related to processing systems. The present study is aimed at presenting a systematic attempt to identify the needs, gaps, and challenges of HRA in CPI. An in-depth analysis of the literature in Web of Science core collection and Scopus databases from 1975 to August 2020 is conducted. This analysis focuses on human factors in three critical elements of CPIs: maintenance operations, emergency operations, and control room operations. The analysis synthesizes the theoretical and empirical findings, shedding light on the strengths and shortcomings of current literature and identifying research opportunities. A comparison of HRA in CPIs is undertaken with nuclear power plants (NPPs) to better understand the current stage of research and research challenges and opportunities.

Suggested Citation

  • Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021001526
    DOI: 10.1016/j.ress.2021.107607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Ladan, S.B. & Turan, O., 2012. "Human reliability analysis—Taxonomy and praxes of human entropy boundary conditions for marine and offshore applications," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 43-54.
    2. Musharraf, Mashrura & Smith, Jennifer & Khan, Faisal & Veitch, Brian & MacKinnon, Scott, 2016. "Assessing offshore emergency evacuation behavior in a virtual environment using a Bayesian Network approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 28-37.
    3. James Chang, Y. & Bley, Dennis & Criscione, Lawrence & Kirwan, Barry & Mosleh, Ali & Madary, Todd & Nowell, Rodney & Richards, Robert & Roth, Emilie M. & Sieben, Scott & Zoulis, Antonios, 2014. "The SACADA database for human reliability and human performance," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 117-133.
    4. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    5. Ekanem, Nsimah J. & Mosleh, Ali & Shen, Song-Hua, 2016. "Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 301-315.
    6. Park, Jinkyun & Jung, Wondea, 2007. "OPERA—a human performance database under simulated emergencies of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 503-519.
    7. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    8. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    9. Reer, Bernhard, 2008. "Review of advances in human reliability analysis of errors of commission—Part 2: EOC quantification," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1105-1122.
    10. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    11. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1014-1040.
    12. Antonovsky, A. & Pollock, C. & Straker, L., 2016. "System reliability as perceived by maintenance personnel on petroleum production facilities," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 58-65.
    13. Musharraf, Mashrura & Bradbury-Squires, David & Khan, Faisal & Veitch, Brian & MacKinnon, Scott & Imtiaz, Syed, 2014. "A virtual experimental technique for data collection for a Bayesian network approach to human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 1-8.
    14. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    15. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    16. Groth, Katrina M. & Mosleh, Ali, 2012. "A data-informed PIF hierarchy for model-based Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 154-174.
    17. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    18. Heo, Gyunyoung & Park, Jinkyun, 2010. "A framework for evaluating the effects of maintenance-related human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 797-805.
    19. Kariuki, S.G. & Löwe, K., 2007. "Integrating human factors into process hazard analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1764-1773.
    20. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    21. De Ambroggi, Massimiliano & Trucco, Paolo, 2011. "Modelling and assessment of dependent performance shaping factors through Analytic Network Process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 849-860.
    22. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    23. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    24. Boring, Ronald L. & Hendrickson, Stacey M.L. & Forester, John A. & Tran, Tuan Q. & Lois, Erasmia, 2010. "Issues in benchmarking human reliability analysis methods: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 591-605.
    25. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    26. Jae W. Kim & Wondea Jung & Jaejoo Ha, 2004. "AGAPE‐ET: A Methodology for Human Error Analysis of Emergency Tasks," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1261-1277, October.
    27. Abílio Ramos, M. & López Droguett, E. & Mosleh, A. & Das Chagas Moura, M., 2020. "A human reliability analysis methodology for oil refineries and petrochemical plants operation: Phoenix-PRO qualitative framework," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    28. Reer, Bernhard, 2008. "Review of advances in human reliability analysis of errors of commission, Part 1: EOC identification," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1091-1104.
    29. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    30. Ham, Dong-Han & Park, Jinkyun, 2020. "Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    31. Xu, Song & Song, Fei & Li, Zhizhong & Zhao, Qianyi & Luo, Wei & He, Xuhong & Salvendy, Gavriel, 2008. "An ergonomics study of computerized emergency operating procedures: Presentation style, task complexity, and training level," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1500-1511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki, 2022. "A novel approach for quantitative importance analysis of safety DI&C systems in the nuclear field," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Esra Yalcin & Gokcen Alev Ciftcioglu & Burcin Hulya Guzel, 2023. "Human Factors Analysis by Classifying Chemical Accidents into Operations," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    3. Xuecai Xie & Jun Hu & Gui Fu & Xueming Shu & Yali Wu & Lida Huang & Shifei Shen, 2023. "Investigation of Unsafe Acts Influence Law Based on System Dynamics Simulation: Thoughts on Behavior Mechanism and Safety Control," IJERPH, MDPI, vol. 20(6), pages 1-30, March.
    4. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Kim, Yochan & Choi, Sun Yeong & Park, Jinkyun & Kim, Jaewhan, 2022. "Empirical study on human error probability of procedure-extraneous behaviors," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    9. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirley, Rachel Benish & Smidts, Carol & Zhao, Yunfei, 2020. "Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simul," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    2. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 2 — Application," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    8. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    9. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    10. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Abílio Ramos, M. & López Droguett, E. & Mosleh, A. & Das Chagas Moura, M., 2020. "A human reliability analysis methodology for oil refineries and petrochemical plants operation: Phoenix-PRO qualitative framework," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    13. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    17. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    18. Ekanem, Nsimah J. & Mosleh, Ali & Shen, Song-Hua, 2016. "Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 301-315.
    19. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin, 2020. "Performance shaping factors dependence assessment through moderating and mediating effect analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021001526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.