IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i4p503-519.html
   My bibliography  Save this article

OPERA—a human performance database under simulated emergencies of nuclear power plants

Author

Listed:
  • Park, Jinkyun
  • Jung, Wondea

Abstract

In complex systems such as the nuclear and chemical industry, the importance of human performance related problems is well recognized. Thus a lot of effort has been spent on this area, and one of the main streams for unraveling human performance related problems is the execution of HRA. Unfortunately a lack of prerequisite information has been pointed out as the most critical problem in conducting HRA. From this necessity, OPERA database that can provide operators’ performance data obtained under simulated emergencies has been developed. In this study, typical operators’ performance data that are available from OPERA database are briefly explained. After that, in order to ensure the appropriateness of OPERA database, operators’ performance data from OPERA database are compared with those of other studies and real events. As a result, it is believed that operators’ performance data of OPERA database are fairly comparable to those of other studies and real events. Therefore it is meaningful to expect that OPERA database can be used as a serviceable data source for scrutinizing human performance related problems including HRA.

Suggested Citation

  • Park, Jinkyun & Jung, Wondea, 2007. "OPERA—a human performance database under simulated emergencies of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 503-519.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:4:p:503-519
    DOI: 10.1016/j.ress.2006.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Jinkyun & Jung, Wondea, 2006. "The appropriateness of the systematic framework to develop diagnosis procedures of nuclear power plants—an experimental verification," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 53-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asad Ullah Amin Shah & Robby Christian & Junyung Kim & Jaewhan Kim & Jinkyun Park & Hyun Gook Kang, 2021. "Dynamic Probabilistic Risk Assessment Based Response Surface Approach for FLEX and Accident Tolerant Fuels for Medium Break LOCA Spectrum," Energies, MDPI, vol. 14(9), pages 1-24, April.
    2. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Garg, Vipul & Vinod, Gopika & Kant, Vivek, 2023. "Auto-CREAM: Software application for evaluation of HEP with basic and extended CREAM for PSA studies," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Choi, Sun Yeong & Kim, Seunghwan, 2018. "Estimating the quantitative relation between PSFs and HEPs from full-scope simulator data," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 12-22.
    5. Park, Jooyoung & Boring, Ronald L. & Ulrich, Thomas A. & Lew, Roger & Lee, Sungheon & Park, Bumjun & Kim, Jonghyun, 2022. "A framework to collect human reliability analysis data for nuclear power plants using a simplified simulator and student operators," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    7. Preischl, Wolfgang & Hellmich, Mario, 2016. "Human error probabilities from operational experience of German nuclear power plants, Part II," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 44-56.
    8. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    9. Liao, Huafei & Groth, Katrina & Stevens-Adams, Susan, 2015. "Challenges in leveraging existing human performance data for quantifying the IDHEAS HRA method," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 159-169.
    10. Park, J. & Chang, Y.J. & Kim, Y. & Choi, S. & Kim, S. & Jung, W., 2017. "The use of the SACADA taxonomy to analyze simulation records: Insights and suggestions," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 174-183.
    11. Cho, Jaehyun & Kim, Yochan & Kim, Jaewhan & Park, Jinkyun & Kim, Dong-San, 2020. "Realistic estimation of human error probability through Monte Carlo thermal-hydraulic simulation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Shirley, Rachel Benish & Smidts, Carol & Zhao, Yunfei, 2020. "Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simul," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Zwirglmaier, Kilian & Straub, Daniel & Groth, Katrina M., 2017. "Capturing cognitive causal paths in human reliability analysis with Bayesian network models," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 117-129.
    15. Park, Jinkyun, 2014. "Investigating the TACOM measure as a general tool for quantifying the complexity of procedure guided tasks," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 66-75.
    16. Groth, Katrina M. & Smith, Curtis L. & Swiler, Laura P., 2014. "A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 32-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:4:p:503-519. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.