IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v119y2013icp251-258.html
   My bibliography  Save this article

The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities

Author

Listed:
  • Noroozi, Alireza
  • Khakzad, Nima
  • Khan, Faisal
  • MacKinnon, Scott
  • Abbassi, Rouzbeh

Abstract

Human factors play an important role in the safe operation of a facility. Human factors include the systematic application of information about human characteristics and behavior to increase the safety of a process system. A significant proportion of human errors occur during the maintenance phase. However, the quantification of human error probabilities in the maintenance phase has not been given the amount of attention it deserves. This paper focuses on a human factors analysis in pre-and post- pump maintenance operations. The procedures for removing process equipment from service (pre-maintenance) and returning the equipment to service (post-maintenance) are considered for possible failure scenarios. For each scenario, human error probability is calculated for each activity using the Success Likelihood Index Method (SLIM). Consequences are also assessed in this methodology. The risk assessment is conducted for each component and the overall risk is estimated by adding individual risks. The present study is aimed at highlighting the importance of considering human error in quantitative risk analyses. The developed methodology has been applied to a case study of an offshore process facility.

Suggested Citation

  • Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
  • Handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:251-258
    DOI: 10.1016/j.ress.2013.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013002032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. M J Carr & A H Christer, 2003. "Incorporating the potential for human error in maintenance models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1249-1253, December.
    3. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    2. Rajesh Kumar Singh & Ayush Gupta, 2020. "Framework for sustainable maintenance system: ISM–fuzzy MICMAC and TOPSIS approach," Annals of Operations Research, Springer, vol. 290(1), pages 643-676, July.
    3. Peter J. Majewicz & Paul Blessner & Bill Olson & Timothy Blackburn, 2020. "Estimating the Probability of Human Error by Incorporating Component Failure Data from User‐Induced Defects in the Development of Complex Electrical Systems," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 200-214, January.
    4. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    7. Erjavac, Anthony J. & Iammartino, Ronald & Fossaceca, John M., 2018. "Evaluation of preconditions affecting symptomatic human error in general aviation and air carrier aviation accidents," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 156-163.
    8. Fakhradin Ghasemi & Mohammad Babamiri & Zahra Pashootan, 2022. "A comprehensive method for the quantification of medication error probability based on fuzzy SLIM," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-17, February.
    9. Małgorzata Jasiulewicz-Kaczmarek & Katarzyna Antosz & Ryszard Wyczółkowski & Dariusz Mazurkiewicz & Bo Sun & Cheng Qian & Yi Ren, 2021. "Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing," Energies, MDPI, vol. 14(5), pages 1-30, March.
    10. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin, 2019. "Reliability assessment of man-machine systems subject to mutually dependent machine degradation and human errors," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    11. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Kandemir, Cagatay & Celik, Metin, 2021. "Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    13. Mojgan Aalipour & Yonas Zewdu Ayele & Abbas Barabadi, 2016. "Human reliability assessment (HRA) in maintenance of production process: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(2), pages 229-238, June.
    14. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Liu, Hu-Chen & Wang, Jing-Hui & Zhang, Ling & Zhang, Qi-Zhen, 2022. "New success likelihood index model for large group human reliability analysis considering noncooperative behaviors and social network," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    17. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    19. Ogbeide, Henry & Thomson, Mary Elizabeth & Gonul, Mustafa Sinan & Pollock, Andrew Castairs & Bhowmick, Sanjay & Bello, Abdullahi Usman, 2023. "The anti-money laundering risk assessment: A probabilistic approach," Journal of Business Research, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    4. Zhang, Limao & Wu, Xianguo & Skibniewski, Miroslaw J. & Zhong, Jingbing & Lu, Yujie, 2014. "Bayesian-network-based safety risk analysis in construction projects," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 29-39.
    5. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    6. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    7. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    8. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Wu Jun & Yang Hui & Cheng Yuan, 2015. "Domino Effect Analysis, Assessment and Prevention in Process Industries," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 481-498, December.
    10. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    13. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    14. Park, Jae-Hyun, 2017. "Time-dependent reliability of wireless networks with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 47-61.
    15. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    16. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    17. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    18. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    20. Xiao, Yong & Wei, Shanbi & Chai, Yi & Pan, Tianle & Hou, Yang, 2023. "Reliability optimization of flexible test system based on pyro-mechanical device products production driven," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:251-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.