IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i12d10.1057_palgrave.jors.2601634.html
   My bibliography  Save this article

Incorporating the potential for human error in maintenance models

Author

Listed:
  • M J Carr

    (University of Salford)

  • A H Christer

    (University of Salford)

Abstract

The mathematics of delay-time modelling of inspection maintenance is extended to incorporate the existence of human error in the form of fault injection during the inspection process. After briefly discussing the basic delay-time model, modifications are introduced to model maintenance scenarios incorporating human error injected defects within the inspection maintenance process. The effects of human error are investigated with the emphasis on its representation and on the assessment of consequences, the objective being to provide a means of determining the cost of human error and to thereby aid corrective decision-making.

Suggested Citation

  • M J Carr & A H Christer, 2003. "Incorporating the potential for human error in maintenance models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1249-1253, December.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:12:d:10.1057_palgrave.jors.2601634
    DOI: 10.1057/palgrave.jors.2601634
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601634
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, W., 1997. "Subjective estimation of the delay time distribution in maintenance modelling," European Journal of Operational Research, Elsevier, vol. 99(3), pages 516-529, June.
    2. K A H Kobbacy & J Jeon, 2001. "The development of a hybrid intelligent maintenance optimisation system (HIMOS)," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(7), pages 762-778, July.
    3. A H Christer, 1999. "Developments in delay time analysis for modelling plant maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1120-1137, November.
    4. Christer, A. H. & Lee, C., 2000. "Refining the delay-time-based PM inspection model with non-negligible system downtime estimates of the expected number of failures," International Journal of Production Economics, Elsevier, vol. 67(1), pages 77-85, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    2. Kiassat, Corey & Safaei, Nima & Banjevic, Dragan, 2014. "Choosing the optimal intervention method to reduce human-related machine failures," European Journal of Operational Research, Elsevier, vol. 233(3), pages 604-612.
    3. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    4. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    2. van Oosterom, C.D. & Elwany, A.H. & Çelebi, D. & van Houtum, G.J., 2014. "Optimal policies for a delay time model with postponed replacement," European Journal of Operational Research, Elsevier, vol. 232(1), pages 186-197.
    3. Peng, Rui & Liu, Bin & Zhai, Qingqing & Wang, Wenbin, 2019. "Optimal maintenance strategy for systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 624-632.
    4. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. P A Scarf & H A Majid, 2011. "Modelling warranty extensions: a case study in the automotive industry," Journal of Risk and Reliability, , vol. 225(2), pages 251-265, June.
    6. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    7. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    8. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    9. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    10. Wenbin Wang & Wenjuan Zhang, 2005. "A model to predict the residual life of aircraft engines based upon oil analysis data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 276-284, April.
    11. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    12. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    13. Wang, Wenbin, 2009. "An inspection model for a process with two types of inspections and repairs," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 526-533.
    14. T Bedford & B M Alkali, 2009. "Competing risks and opportunistic informative maintenance," Journal of Risk and Reliability, , vol. 223(4), pages 363-372, December.
    15. M Black & A T Brint & J R Brailsford, 2005. "A semi-Markov approach for modelling asset deterioration," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1241-1249, November.
    16. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    17. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    18. Wang, Wenbin & Banjevic, Dragan, 2012. "Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 1-7.
    19. Wang, Wenbin, 2011. "A joint spare part and maintenance inspection optimisation model using the Delay-Time concept," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1535-1541.
    20. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:12:d:10.1057_palgrave.jors.2601634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.