IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v55y2010i2p209-220.html
   My bibliography  Save this article

An environmental and economic assessment of topsoil production from dredge material

Author

Listed:
  • Sheehan, C.
  • Harrington, J.
  • Murphy, J.D.

Abstract

This paper investigates the environmental and economic feasibility of producing manufactured topsoil at the Port of Waterford, Ireland from two waste streams; dredge material and household waste. Four dredging and dredge material transport scenarios to a topsoil production facility are proposed; a trailing suction hopper dredger (TSHD) with pipeline transport, a grab hopper dredger (GHD) with barge transport, a small purchased port owned dredger (TSHD) with hopper transport and a leased dredger (GHD) with hopper transport. The stringent legislative framework governing the proposal is outlined. A detailed environmental and economic analysis is presented for each scenario. The environmental analysis presents results for CO2 transport emissions and also presents sensitivity analyses for different projects parameters. The economic analysis presents the annual profits or losses for each scenario for a range of topsoil production quantities and integrated into the current dredging regime at the Port of Waterford. Economic sensitivity analyses are presented for different project parameters. This paper recommends, based on the analysis undertaken, the use of a leased dredger with hopper transport to transport the dredge material to the topsoil production site as the most feasible option currently available at the Port of Waterford. The proposal provides an environmentally sustainable end use for dredge material as an alternative to disposal at sea.

Suggested Citation

  • Sheehan, C. & Harrington, J. & Murphy, J.D., 2010. "An environmental and economic assessment of topsoil production from dredge material," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 209-220.
  • Handle: RePEc:eee:recore:v:55:y:2010:i:2:p:209-220
    DOI: 10.1016/j.resconrec.2010.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344910002120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2010.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murphy, J.D. & McCarthy, K., 2005. "Ethanol production from energy crops and wastes for use as a transport fuel in Ireland," Applied Energy, Elsevier, vol. 82(2), pages 148-166, October.
    2. Sheehan, C. & Harrington, J. & Murphy, J.D., 2010. "A technical assessment of topsoil production from dredged material," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1377-1385.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Behera, Shuvashish & Kar, Shaktimay & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices," Applied Energy, Elsevier, vol. 87(1), pages 96-100, January.
    3. Woldemariam, Daniel & Kullab, Alaa & Khan, Ershad Ullah & Martin, Andrew, 2018. "Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study," Renewable Energy, Elsevier, vol. 128(PB), pages 484-494.
    4. Szklo, Alexandre & Schaeffer, Roberto & Delgado, Fernanda, 2007. "Can one say ethanol is a real threat to gasoline?," Energy Policy, Elsevier, vol. 35(11), pages 5411-5421, November.
    5. Nikafkar, Nasrin & Alroaia, Younos Vakil & Heydariyeh, Seyyed Abdollah & Schleiss, Anton J., 2023. "Economic and commercial analysis of reusing dam reservoir sediments," Ecological Economics, Elsevier, vol. 204(PB).
    6. Zhou, Wei & Yang, Hongxing & Rissanen, Markku & Nygren, Bertil & Yan, Jinyue, 2012. "Decrease of energy demand for bioethanol-based polygeneration system through case study," Applied Energy, Elsevier, vol. 95(C), pages 305-311.
    7. Styles, David & Jones, Michael B., 2008. "Miscanthus and willow heat production--An effective land-use strategy for greenhouse gas emission avoidance in Ireland?," Energy Policy, Elsevier, vol. 36(1), pages 97-107, January.
    8. Roque, R.M.N. & Baig, M.N. & Leeke, G.A. & Bowra, S. & Santos, R.C.D., 2012. "Study on sub-critical water mediated hydrolysis of Miscanthus a lignocellulosic biomass," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 43-46.
    9. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    10. Power, N. & Murphy, J.D. & McKeogh, E., 2008. "What crop rotation will provide optimal first-generation ethanol production in Ireland, from technical and economic perspectives?," Renewable Energy, Elsevier, vol. 33(7), pages 1444-1454.
    11. Thamsiriroj, T. & Murphy, J.D., 2009. "Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?," Applied Energy, Elsevier, vol. 86(5), pages 595-604, May.
    12. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    13. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    14. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    15. Djuric Ilic, Danica & Dotzauer, Erik & Trygg, Louise, 2012. "District heating and ethanol production through polygeneration in Stockholm," Applied Energy, Elsevier, vol. 91(1), pages 214-221.
    16. Md. I. Haque & Stelios Rozakis & A. Natsis & M. Borzecka-Walker & K. Mizak, 2011. "Cost effectiveness of bio-ethanol to reduce carbon dioxide emissions in Greece," Working Papers 2011-3, Agricultural University of Athens, Department Of Agricultural Economics.
    17. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    18. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    19. Thamsiriroj, T. & Murphy, J.D., 2011. "The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017," Renewable Energy, Elsevier, vol. 36(1), pages 50-63.
    20. Hector M. Fonseca-Peralta & Karen V. Pineda-Hidalgo & Claudia Castro-Martínez & Ignacio Contreras-Andrade, 2022. "Effect of Zinc-Calcium on Xylose Consumption by Mucor circinelloides (MN128960): Xylitol and Ethanol Yield Optimization," Energies, MDPI, vol. 15(3), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:55:y:2010:i:2:p:209-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.