Advanced Search
MyIDEAS: Login to save this article or follow this journal

Techno-economic evaluation of thermo-chemical biomass-to-ethanol

Contents:

Author Info

  • He, Jie
  • Zhang, Wennan
Registered author(s):

    Abstract

    Bio-ethanol has received considerable attention as a basic chemical and fuel additive. Bio-ethanol is presently produced from sugar/starch materials, but can also be produced from lignocellulosic biomass via hydrolysis-fermentation route or thermo-chemical route. In terms of thermo-chemical route, a few pilot plants ranging from 0.3 to 67Â MW have been built and operated for alcohols synthesis. However, commercial success has not been found. In order to realize cost-competitive commercial ethanol production from lignocellulosic biomass through thermo-chemical pathway, a techno-economic analysis needs to be done. In this paper, a thermo-chemical process is designed, simulated and optimized mainly with ASPEN Plus. The techno-economic assessment is made in terms of ethanol yield, synthesis selectivity, carbon and CO conversion efficiencies, and ethanol production cost. Calculated results show that major contributions to the production cost are from biomass feedstock and syngas cleaning. A biomass-to-ethanol plant should be built around 200Â MW. Cost-competitive ethanol production can be realized with efficient equipments, optimized operation, cost-effective syngas cleaning technology, inexpensive raw material with low pretreatment cost, high performance catalysts, off-gas and methanol recycling, optimal systematic configuration and heat integration, and high value byproduct.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1T-51CRWJ5-1/2/2e7f26f34562b018e4c785c4e4f2bc56
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 88 (2011)
    Issue (Month): 4 (April)
    Pages: 1224-1232

    as in new window
    Handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1224-1232

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: Ethanol Syngas Biomass BTL Efficiency Economy;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Qiu, Huanguang & Huang, Jikun & Yang, Jun & Rozelle, Scott & Zhang, Yuhua & Zhang, Yahui & Zhang, Yanli, 2010. "Bioethanol development in China and the potential impacts on its agricultural economy," Applied Energy, Elsevier, vol. 87(1), pages 76-83, January.
    2. Zheng, Yi & Pan, Zhongli & Zhang, Ruihong & Wang, Donghai, 2009. "Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production," Applied Energy, Elsevier, vol. 86(11), pages 2459-2465, November.
    3. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages S178-S188, November.
    4. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    5. Murphy, J.D. & McCarthy, K., 2005. "Ethanol production from energy crops and wastes for use as a transport fuel in Ireland," Applied Energy, Elsevier, vol. 82(2), pages 148-166, October.
    6. Eriksson, Gunnar & Kjellström, Björn, 2010. "Assessment of combined heat and power (CHP) integrated with wood-based ethanol production," Applied Energy, Elsevier, vol. 87(12), pages 3632-3641, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    2. Sorda, Giovanni & Madlener, Reinhard, 2012. "Cost-Effectiveness of Lignocellulose Biorefineries and their Impact on the Deciduous Wood Markets in Germany," FCN Working Papers 8/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Chen, Hsing Hung & Lee, Amy H.I. & Chen, Silu, 2014. "Strategic policy to select suitable intermediaries for innovation to promote PV solar energy industry in China," Applied Energy, Elsevier, vol. 115(C), pages 429-437.
    4. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    5. Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
    6. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    7. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1224-1232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.