IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v104y2015ipbp391-404.html
   My bibliography  Save this article

Stochastic reverse logistics network design for waste of electrical and electronic equipment

Author

Listed:
  • Ayvaz, Berk
  • Bolat, Bersam
  • Aydın, Nezir

Abstract

In recent years, Reverse Logistics has received increasing attentions in supply chain management area. The reasons such as political, economic, green image and social responsibility etc. force firms to develop strategies to their current systems. The aim of this study is to propose a generic Reverse Logistics Network Design model under return quantity, sorting ratio (quality), and transportation cost uncertainties. We present a generic multi-echelon, multi-product and capacity constrained two stage stochastic programing model to take into consideration uncertainties in Reverse Logistics Network Design for a third party waste of electrical and electronic equipment recycling companies to maximize profit. We validated developed model by applying to a real world case study for waste of electrical and electronic equipment recycling firm in Turkey. Sample average approximation method was used to solve the model. Results show that the developed two stage stochastic programming model provides acceptable solutions to make efficient decisions under quantity, quality and transportation cost uncertainties.

Suggested Citation

  • Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
  • Handle: RePEc:eee:recore:v:104:y:2015:i:pb:p:391-404
    DOI: 10.1016/j.resconrec.2015.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915300392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    2. Listes, Ovidiu & Dekker, Rommert, 2005. "A stochastic approach to a case study for product recovery network design," European Journal of Operational Research, Elsevier, vol. 160(1), pages 268-287, January.
    3. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    4. Lee, Der-Horng & Dong, Meng, 2009. "Dynamic network design for reverse logistics operations under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 61-71, January.
    5. Listes, O.L., 2002. "A decomposition approach to a stochastic model for supply-and-return network design," Econometric Institute Research Papers EI 2002-43, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    7. Averill M. Law & W. David Kelton, 1982. "Confidence Intervals for Steady-State Simulations II: A Survey of Sequential Procedures," Management Science, INFORMS, vol. 28(5), pages 550-562, May.
    8. Pati, Rupesh Kumar & Vrat, Prem & Kumar, Pradeep, 2008. "A goal programming model for paper recycling system," Omega, Elsevier, vol. 36(3), pages 405-417, June.
    9. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    10. Achillas, Ch. & Aidonis, D. & Vlachokostas, Ch. & Moussiopoulos, N. & Banias, G. & Triantafillou, D., 2012. "A multi-objective decision-making model to select waste electrical and electronic equipment transportation media," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 76-84.
    11. Piyawat Chanintrakul & Adrian E. Coronado Mondragon & Chandra Lalwani & Chee Yew Wong, 2009. "Reverse logistics network design: a state-of-the-art literature review," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 1(1), pages 61-81.
    12. Aydin, Nezir & Murat, Alper, 2013. "A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 173-183.
    13. Barros, A. I. & Dekker, R. & Scholten, V., 1998. "A two-level network for recycling sand: A case study," European Journal of Operational Research, Elsevier, vol. 110(2), pages 199-214, October.
    14. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    15. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2010. "Simultaneous design and planning of supply chains with reverse flows: A generic modelling framework," European Journal of Operational Research, Elsevier, vol. 203(2), pages 336-349, June.
    16. Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.
    17. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    18. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    19. Kannan, Devika & Diabat, Ali & Alrefaei, Mahmoud & Govindan, Kannan & Yong, Geng, 2012. "A carbon footprint based reverse logistics network design model," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 75-79.
    20. Jayaraman, Vaidyanathan & Patterson, Raymond A. & Rolland, Erik, 2003. "The design of reverse distribution networks: Models and solution procedures," European Journal of Operational Research, Elsevier, vol. 150(1), pages 128-149, October.
    21. M. Fonseca & Álvaro García-Sánchez & Miguel Ortega-Mier & Francisco Saldanha-da-Gama, 2010. "A stochastic bi-objective location model for strategic reverse logistics," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 158-184, July.
    22. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gazi Murat Duman & Elif Kongar, 2023. "ESG Modeling and Prediction Uncertainty of Electronic Waste," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    2. Liao, Chi-Shun & Chuang, Hui-Kai, 2022. "Determinants of innovative green electronics: An experimental study of eco-friendly laptop computers," Technovation, Elsevier, vol. 113(C).
    3. Xiaoqing Zhang & Wantong Chen & Min Wang & Dalin Zhang, 2022. "Optimal Decisions in Green, Low-Carbon Supply Chain Considering the Competition and Cooperation Relationships between Different Types of Manufacturers," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    4. RuiYang Li & Ming He & HongYue He & QiaoYu Deng, 2022. "Heuristic column generation for designing an express circular packaging distribution network," Operational Research, Springer, vol. 22(2), pages 1103-1126, April.
    5. Mpho Sharon Makgedi Makaleng & Progress Hove-Sibanda, 2022. "Reverse Logistics Strategies and Their Effect on the Competitiveness of Fast-Moving Consumer Goods Firms in South Africa," Logistics, MDPI, vol. 6(3), pages 1-26, August.
    6. Vahid Azizi & Guiping Hu, 2021. "A Multi-Stage Stochastic Programming Model for the Multi-Echelon Multi-Period Reverse Logistics Problem," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    7. Peng Li & Di Wu, 2021. "A Multi-Echelon Network Design in a Dual-Channel Reverse Supply Chain Considering Consumer Preference," IJERPH, MDPI, vol. 18(9), pages 1-24, April.
    8. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    9. Adriana Scrioșteanu & Maria Magdalena Criveanu, 2023. "Reverse Logistics of Packaging Waste under the Conditions of a Sustainable Circular Economy at the Level of the European Union States," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    10. Suryawanshi, Pravin & Dutta, Pankaj, 2022. "Optimization models for supply chains under risk, uncertainty, and resilience: A state-of-the-art review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    11. Xigang Yuan & Fei Tang & Dalin Zhang & Xiaoqing Zhang, 2021. "Green Remanufacturer’s Mixed Collection Channel Strategy Considering Enterprise’s Environmental Responsibility and the Fairness Concern in Reverse Green Supply Chain," IJERPH, MDPI, vol. 18(7), pages 1-18, March.
    12. de Oliveira Neto, Geraldo Cardoso & de Jesus Cardoso Correia, Auro & Schroeder, Adriano Michelotti, 2017. "Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 42-55.
    13. Shubham Kumar Singh & Anand Chauhan & Biswajit Sarkar, 2022. "Supply Chain Management of E-Waste for End-of-Life Electronic Products with Reverse Logistics," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    14. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    15. Nakatani, Jun & Konno, Kiyoto & Moriguchi, Yuichi, 2017. "Variability-based optimal design for robust plastic recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 53-60.
    16. Yalcin Berberoglu & Yigit Kazancoglu & Muhittin Sagnak, 2023. "Circularity assessment of logistics activities for green business performance management," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4734-4749, November.
    17. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    18. Jia Mao & Jinyuan Cheng & Xiangyu Li & Honggang Zhao & Dexin Yu, 2023. "Simulation of Low Carbon Layout Optimization of Disassembly Line Based on SLP Method," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    19. Rui Li & Xin Chen, 2022. "Reverse Logistics Network Design under Disruption Risk for Third-Party Logistics Providers," Sustainability, MDPI, vol. 14(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    2. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    3. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    4. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    5. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    6. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    7. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    8. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco & Verter, Vedat, 2012. "Multi-period reverse logistics network design," European Journal of Operational Research, Elsevier, vol. 220(1), pages 67-78.
    9. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    10. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    11. Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.
    12. Vahdani, Behnam & Tavakkoli-Moghaddam, Reza & Modarres, Mohammad & Baboli, Armand, 2012. "Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1152-1168.
    13. Eskandarpour, Majid & Zegordi, Seyed Hessameddin & Nikbakhsh, Ehsan, 2013. "A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 117-131.
    14. Mohammad Fattahi & Kannan Govindan, 2017. "Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products," Annals of Operations Research, Springer, vol. 253(1), pages 193-225, June.
    15. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    16. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.
    17. Barker, Theresa J. & Zabinsky, Zelda B., 2011. "A multicriteria decision making model for reverse logistics using analytical hierarchy process," Omega, Elsevier, vol. 39(5), pages 558-573, October.
    18. Khatami, Maryam & Mahootchi, Masoud & Farahani, Reza Zanjirani, 2015. "Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 1-21.
    19. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    20. Anil Jindal & Kuldip Singh Sangwan, 2017. "Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors," Annals of Operations Research, Springer, vol. 257(1), pages 95-120, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:104:y:2015:i:pb:p:391-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.