IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p15111-d974502.html
   My bibliography  Save this article

Optimal Decisions in Green, Low-Carbon Supply Chain Considering the Competition and Cooperation Relationships between Different Types of Manufacturers

Author

Listed:
  • Xiaoqing Zhang

    (Business School, Jiangsu Normal University, Xuzhou 221116, China)

  • Wantong Chen

    (Business School, Jiangsu Normal University, Xuzhou 221116, China)

  • Min Wang

    (School of Business, Linyi University, Linyi 276000, China)

  • Dalin Zhang

    (Department of Computer Science, Aalborg University, 9220 Aalborg, Denmark)

Abstract

In this study, we built a green, low-carbon supply chain including one green manufacturer, one green remanufacturer and one retailer in which the manufacturer produces new, green, low-carbon products and the remanufacturer recycles and remanufactures the green, low-carbon products. We assumed the manufacturer to be the Stackelberg leader and the remanufacturer and the retailer to be Stackelberg followers. The game model was solved using backward induction. We discuss the optimal operation strategies for green, low-carbon supply-chain members in a centralized decision-making model, decentralized decision-making model, manufacturer–remanufacturer cooperative decision-making model and manufacturer–retailer cooperative decision-making model. Furthermore, we discuss the impacts of the unit cost savings for remanufacturing, the recovery cost coefficient and the green improvement cost coefficient on the green supply-chain members’ optimal decision and profits. The results show that increased unit cost savings from remanufacturing can increase the total profit of the supply chain and promote the recycling and remanufacturing of waste products. Moreover, the total profit of the green, low-carbon supply chain is the highest in the centralized decision-making model and lowest in the manufacturer cooperative decision-making model. When there is a cooperation relationship between the manufacturer and the retailer, the optimal recycling effort level and the optimal greenness level for the new product and the remanufactured product are the highest.

Suggested Citation

  • Xiaoqing Zhang & Wantong Chen & Min Wang & Dalin Zhang, 2022. "Optimal Decisions in Green, Low-Carbon Supply Chain Considering the Competition and Cooperation Relationships between Different Types of Manufacturers," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15111-:d:974502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/15111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/15111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S Swami & J Shah, 2013. "Channel coordination in green supply chain management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 336-351, March.
    2. Elie Ofek & Zsolt Katona & Miklos Sarvary, 2011. ""Bricks and Clicks": The Impact of Product Returns on the Strategies of Multichannel Retailers," Marketing Science, INFORMS, vol. 30(1), pages 42-60, 01-02.
    3. Chialin Chen, 2001. "Design for the Environment: A Quality-Based Model for Green Product Development," Management Science, INFORMS, vol. 47(2), pages 250-263, February.
    4. Chuang, Chia-Hung & Wang, Charles X. & Zhao, Yabing, 2014. "Closed-loop supply chain models for a high-tech product under alternative reverse channel and collection cost structures," International Journal of Production Economics, Elsevier, vol. 156(C), pages 108-123.
    5. V. Daniel R. Guide , Jr. & Gilvan C. Souza & Luk N. Van Wassenhove & Joseph D. Blackburn, 2006. "Time Value of Commercial Product Returns," Management Science, INFORMS, vol. 52(8), pages 1200-1214, August.
    6. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    7. De Giovanni, Pietro & Reddy, Puduru V. & Zaccour, Georges, 2016. "Incentive strategies for an optimal recovery program in a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 249(2), pages 605-617.
    8. Wang, Wei & Li, Gang & Cheng, T.C.E., 2016. "Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs," International Journal of Production Economics, Elsevier, vol. 173(C), pages 54-65.
    9. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    10. Kartick Dey & Sankhadip Roy & Subrata Saha, 2019. "The impact of strategic inventory and procurement strategies on green product design in a two-period supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 1915-1948, April.
    11. Hong, I-Hsuan & Yeh, Jun-Sheng, 2012. "Modeling closed-loop supply chains in the electronics industry: A retailer collection application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 817-829.
    12. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xigang Yuan & Fei Tang & Dalin Zhang & Xiaoqing Zhang, 2021. "Green Remanufacturer’s Mixed Collection Channel Strategy Considering Enterprise’s Environmental Responsibility and the Fairness Concern in Reverse Green Supply Chain," IJERPH, MDPI, vol. 18(7), pages 1-18, March.
    2. Pietro De Giovanni & Georges Zaccour, 2022. "A selective survey of game-theoretic models of closed-loop supply chains," Annals of Operations Research, Springer, vol. 314(1), pages 77-116, July.
    3. Quan, Yuting & Hong, Jiangtao & Song, Jingpu & Leng, Mingming, 2021. "Game-theoretic analysis of trade-in services in closed-loop supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Pietro Giovanni & Georges Zaccour, 2019. "A selective survey of game-theoretic models of closed-loop supply chains," 4OR, Springer, vol. 17(1), pages 1-44, March.
    5. Yande Gong & Mengze Chen & Yuliang Zhuang, 2019. "Decision-Making and Performance Analysis of Closed-Loop Supply Chain under Different Recycling Modes and Channel Power Structures," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    6. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    7. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    8. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    9. Maiti, T. & Giri, B.C., 2017. "Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 259-272.
    10. Wang, Wenbin & Yang, Siqi & Xu, Lei & Yang, Xiaoli, 2019. "Carrot/stick mechanisms for collection responsibility sharing in multi-tier closed-loop supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 366-387.
    11. C. Mondal & B. C. Giri & T. Maiti, 2020. "Pricing and greening strategies for a dual-channel closed-loop green supply chain," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 724-761, September.
    12. Genc, Talat S. & De Giovanni, Pietro, 2018. "Optimal return and rebate mechanism in a closed-loop supply chain game," European Journal of Operational Research, Elsevier, vol. 269(2), pages 661-681.
    13. Chen, Cheng-Kang & Ulya, M. Akmalul ', 2019. "Analyses of the reward-penalty mechanism in green closed-loop supply chains with product remanufacturing," International Journal of Production Economics, Elsevier, vol. 210(C), pages 211-223.
    14. Jochen Gönsch & Nora Dörmann, 2021. "On the influence of collection cost on reverse channel configuration," Journal of Business Economics, Springer, vol. 91(2), pages 179-213, March.
    15. Linan Zhou & Gengui Zhou & Hangying Li & Jian Cao, 2023. "Channel Selection of Closed-Loop Supply Chain for Scrapped Agricultural Machines Remanufacturing," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    16. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    17. Michael Krapp & Johannes B. Kraus, 2019. "Coordination contracts for reverse supply chains: a state-of-the-art review," Journal of Business Economics, Springer, vol. 89(7), pages 747-792, September.
    18. Zongsheng Huang, 2020. "Stochastic Differential Game in the Closed-Loop Supply Chain with Fairness Concern Retailer," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    19. Wang, Yuyan & Yu, Zhaoqing & Shen, Liang & Jin, Mingzhou, 2022. "Operational modes of E-closed loop supply chain considering platforms’ services," International Journal of Production Economics, Elsevier, vol. 251(C).
    20. Huang, Yanting & Wang, Zongjun, 2017. "Values of information sharing: A comparison of supplier-remanufacturing and manufacturer-remanufacturing scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 20-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15111-:d:974502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.