IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6413-d287066.html
   My bibliography  Save this article

Decision-Making and Performance Analysis of Closed-Loop Supply Chain under Different Recycling Modes and Channel Power Structures

Author

Listed:
  • Yande Gong

    (School of Business, Nanjing Audit University, Nanjing 211815, China)

  • Mengze Chen

    (School of Business, Nanjing Audit University, Nanjing 211815, China)

  • Yuliang Zhuang

    (School of Business, Nanjing Audit University, Nanjing 211815, China)

Abstract

The recycling and remanufacturing of e-waste is linked to a worldwide emphasis on the establishment and implementation of Extended Producer Responsibility system (ERP), which has become an important problem in the process of cycling economy. Meanwhile, with the development and expansion of large-scale retail enterprises, the power structure of supply chain channels is showing a tendency towards diversity as well. However, few studies on closed-loop supply chains (CLSC) have considered both recycling modes and channel power structures. We aim to explore the influence of different recycling modes and channel power structures on the optimal decisions and performance of a closed-loop supply chain (CLSC), considering three recycling channels including manufacturer recycling, retailer recycling and hybrid recycling of retailer and manufacturer and two dominant modes including manufacturer-led and retailer-led. We construct six closed-loop supply chain models under different combinations of three recycling channels and two dominant modes. We analyze the effect of different recycling channels on company decision-making under the same dominant mode, whether participating in recycling has an impact on company decision-making under different dominant modes, and the effect on supply chain members and supply chain system under different dominant modes and recycling channels. The results show that the hybrid recycling strategy is always optimal for both supply chain members; the sub-optimal recycling strategies are both recycled by the subordinate enterprise, and the worst recycling strategies are both recycled by the leading enterprise. Moreover, it is always the worst strategy for manufacturer to participate in a closed-loop supply chain dominated by retailer and recycled by retailer; participating in a closed-loop supply chain dominated by manufacturer and recycled by manufacturer is always the worst strategy for retailer. From a system point of view, system efficiency is the highest under hybrid recycling, and system efficiency is the lowest if leading company recycles separately.

Suggested Citation

  • Yande Gong & Mengze Chen & Yuliang Zhuang, 2019. "Decision-Making and Performance Analysis of Closed-Loop Supply Chain under Different Recycling Modes and Channel Power Structures," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6413-:d:287066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Wei-min & Zhao, Zhang & Ke, Hua, 2013. "Dual-channel closed-loop supply chain with government consumption-subsidy," European Journal of Operational Research, Elsevier, vol. 226(2), pages 221-227.
    2. Zou, Zong-Bao & Wang, Jian-Jun & Deng, Gui-Shi & Chen, Haozhe, 2016. "Third-party remanufacturing mode selection: Outsourcing or authorization?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 1-19.
    3. Ata A. Taleizadeh & Mohammad S. Moshtagh & Ilkyeong Moon, 2017. "Optimal decisions of price, quality, effort level and return policy in a three-level closed-loop supply chain based on different game theory approaches," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 11(4), pages 486-525.
    4. Genc, Talat S. & Giovanni, Pietro De, 2017. "Trade-in and save: A two-period closed-loop supply chain game with price and technology dependent returns," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 514-527.
    5. Chuang, Chia-Hung & Wang, Charles X. & Zhao, Yabing, 2014. "Closed-loop supply chain models for a high-tech product under alternative reverse channel and collection cost structures," International Journal of Production Economics, Elsevier, vol. 156(C), pages 108-123.
    6. Feng, Lipan & Govindan, Kannan & Li, Chunfa, 2017. "Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior," European Journal of Operational Research, Elsevier, vol. 260(2), pages 601-612.
    7. Jie Xu & Nan Liu, 2017. "Erratum to: Research on closed loop supply chain with reference price effect," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 65-67, January.
    8. De Giovanni, Pietro & Reddy, Puduru V. & Zaccour, Georges, 2016. "Incentive strategies for an optimal recovery program in a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 249(2), pages 605-617.
    9. Liu, Huihui & Lei, Ming & Deng, Honghui & Keong Leong, G. & Huang, Tao, 2016. "A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy," Omega, Elsevier, vol. 59(PB), pages 290-302.
    10. Emad Sane Zerang & Ata Allah Taleizadeh & Jafar Razmi, 2018. "Analytical comparisons in a three-echelon closed-loop supply chain with price and marketing effort-dependent demand: game theory approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 451-478, February.
    11. Kumar Jena, Sarat & Sarmah, S.P, 2014. "Price competition and co-operation in a duopoly closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 156(C), pages 346-360.
    12. Jackson Jinhong Mi & Zongsheng Huang & Kai Wang & Sang-Bing Tsai & Guodong Li & Jiangtao Wang, 2018. "The Presence of a Powerful Retailer on Dynamic Collecting Closed-Loop Supply Chain From a Sustainable Innovation Perspective," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    13. Huang, Min & Song, Min & Lee, Loo Hay & Ching, Wai Ki, 2013. "Analysis for strategy of closed-loop supply chain with dual recycling channel," International Journal of Production Economics, Elsevier, vol. 144(2), pages 510-520.
    14. Zhao, Jing & Wei, Jie & Li, Yongjian, 2014. "Pricing decisions for substitutable products in a two-echelon supply chain with firms׳ different channel powers," International Journal of Production Economics, Elsevier, vol. 153(C), pages 243-252.
    15. Ma, Peng & Wang, Haiyan & Shang, Jennifer, 2013. "Supply chain channel strategies with quality and marketing effort-dependent demand," International Journal of Production Economics, Elsevier, vol. 144(2), pages 572-581.
    16. Hu Huang & Hua Ke, 2017. "Pricing decision problem for substitutable products based on uncertainty theory," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 503-514, March.
    17. Atalay Atasu & Miklos Sarvary & Luk N. Van Wassenhove, 2008. "Remanufacturing as a Marketing Strategy," Management Science, INFORMS, vol. 54(10), pages 1731-1746, October.
    18. Hong, Xianpei & Xu, Lei & Du, Peng & Wang, Wenjuan, 2015. "Joint advertising, pricing and collection decisions in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 167(C), pages 12-22.
    19. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    20. Choi, Tsan-Ming & Li, Yongjian & Xu, Lei, 2013. "Channel leadership, performance and coordination in closed loop supply chains," International Journal of Production Economics, Elsevier, vol. 146(1), pages 371-380.
    21. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    22. Jie Xu & Nan Liu, 2017. "Research on closed loop supply chain with reference price effect," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 51-64, January.
    23. Hong, I-Hsuan & Yeh, Jun-Sheng, 2012. "Modeling closed-loop supply chains in the electronics industry: A retailer collection application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 817-829.
    24. R. Canan Savaskan & Luk N. Van Wassenhove, 2006. "Reverse Channel Design: The Case of Competing Retailers," Management Science, INFORMS, vol. 52(1), pages 1-14, January.
    25. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jixiang Zhang & Chen Zhu, 2020. "Research on the Dynamic Pricing and Service Decisions in the Reverse Supply Chain considering Consumers’ Service Sensitivity," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    2. Yuyao Guo & Lei Wang & Zelin Zhang & Jianhua Cao & Xuhui Xia, 2023. "Association Rule Mining-Based Generalized Growth Mode Selection: Maximizing the Value of Retired Mechanical Parts," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    3. Jian Wang & Wenxuan Shao, 2021. "Joint Capacity Investment, Collecting and Pricing Decisions in a Capacity Constraint Closed-Loop Supply Chain Considering Cooperation," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    4. Tianle Tian & Chuiyong Zheng & Liguo Yang & Xiaochun Luo & Lin Lu, 2022. "Optimal Recycling Channel Selection of Power Battery Closed-Loop Supply Chain Considering Corporate Social Responsibility in China," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    5. Xiaomin Zhao & Xueli Bai & Zhihui Fan & Ting Liu, 2020. "Game Analysis and Coordination of a Closed-Loop Supply Chain: Perspective of Components Reuse Strategy," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    6. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    7. Peng Xing & Xiangru Zhao & Mingxing Wang, 2022. "The Optimal Combination between Recycling Channel and Logistics Service Outsourcing in a Closed-Loop Supply Chain Considering Consumers’ Environmental Awareness," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    8. Hilal Shams & Altaf Hossain Molla & Mohd Nizam Ab Rahman & Hawa Hishamuddin & Zambri Harun & Nallapaneni Manoj Kumar, 2023. "Exploring Industry-Specific Research Themes on E-Waste: A Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    9. Dooho Lee, 2020. "Who Drives Green Innovation? A Game Theoretical Analysis of a Closed-Loop Supply Chain under Different Power Structures," IJERPH, MDPI, vol. 17(7), pages 1-26, March.
    10. Liu, Hongda & Huang, Feipeng & Huang, Jialiang, 2022. "Measuring the coordination decision of renewable energy as a natural resource contracts based on rights structure and corporate social responsibility from economic recovery," Resources Policy, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    2. Pietro De Giovanni & Georges Zaccour, 2022. "A selective survey of game-theoretic models of closed-loop supply chains," Annals of Operations Research, Springer, vol. 314(1), pages 77-116, July.
    3. Pietro Giovanni & Georges Zaccour, 2019. "A selective survey of game-theoretic models of closed-loop supply chains," 4OR, Springer, vol. 17(1), pages 1-44, March.
    4. Matsui, Kenji, 2022. "Optimal timing of acquisition price announcement for used products in a dual-recycling channel reverse supply chain," European Journal of Operational Research, Elsevier, vol. 300(2), pages 615-632.
    5. Matsui, Kenji, 2023. "Dual-recycling channel reverse supply chain design of recycling platforms under acquisition price competition," International Journal of Production Economics, Elsevier, vol. 259(C).
    6. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    7. Maiti, T. & Giri, B.C., 2017. "Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 259-272.
    8. Feng, Lipan & Govindan, Kannan & Li, Chunfa, 2017. "Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior," European Journal of Operational Research, Elsevier, vol. 260(2), pages 601-612.
    9. Huang, Yanting & Wang, Zongjun, 2017. "Information sharing in a closed-loop supply chain with technology licensing," International Journal of Production Economics, Elsevier, vol. 191(C), pages 113-127.
    10. Jochen Gönsch & Nora Dörmann, 2021. "On the influence of collection cost on reverse channel configuration," Journal of Business Economics, Springer, vol. 91(2), pages 179-213, March.
    11. Jalali, Hamed & Ansaripoor, Amir H. & De Giovanni, Pietro, 2020. "Closed-loop supply chains with complementary products," International Journal of Production Economics, Elsevier, vol. 229(C).
    12. Hadi Sahebi & Shayan Ranjbar & Ashkan Teymouri, 2022. "Investigating different reverse channels in a closed-loop supply chain: a power perspective," Operational Research, Springer, vol. 22(3), pages 1939-1985, July.
    13. He, Qidong & Wang, Nengmin & Yang, Zhen & He, Zhengwen & Jiang, Bin, 2019. "Competitive collection under channel inconvenience in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 155-166.
    14. He, Qidong & Wang, Nengmin & Browning, Tyson R. & Jiang, Bin, 2022. "Competitive collection with convenience-perceived customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 239-254.
    15. Zongsheng Huang, 2020. "Stochastic Differential Game in the Closed-Loop Supply Chain with Fairness Concern Retailer," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    16. Jianmin Xiao & Zongsheng Huang, 2019. "A Stochastic Differential Game in the Closed-Loop Supply Chain with Third-Party Collecting and Fairness Concerns," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    17. He, Yuanjie, 2017. "Supply risk sharing in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 39-52.
    18. Linan Zhou & Gengui Zhou & Hangying Li & Jian Cao, 2023. "Channel Selection of Closed-Loop Supply Chain for Scrapped Agricultural Machines Remanufacturing," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    19. Yanting Huang & Zongjun Wang, 2017. "Dual-Recycling Channel Decision in a Closed-Loop Supply Chain with Cost Disruptions," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    20. Emad Sane Zerang & Ata Allah Taleizadeh & Jafar Razmi, 2018. "Analytical comparisons in a three-echelon closed-loop supply chain with price and marketing effort-dependent demand: game theory approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 451-478, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6413-:d:287066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.