IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v157y2022ics1366554521003112.html
   My bibliography  Save this article

Optimization models for supply chains under risk, uncertainty, and resilience: A state-of-the-art review and future research directions

Author

Listed:
  • Suryawanshi, Pravin
  • Dutta, Pankaj

Abstract

The study of supply chain (SC) resilience as a research perspective is in an incipient state. Nevertheless, there is a tremendous amount of literature concerning SCs under risk and uncertainty. This paper presents a review of the quantitative models for SC resilience using bibliometric and network analyses. The study identified 3672 articles and provided statistical measurements of science, scientists, and scientific activities. Additionally, the analysis highlights the inter-temporal dimensions of decision making and classifies articles based on their usability in real-world applications. Systematic mapping using co-citation and the PageRank algorithm resulted in seven key research themes, and a microlevel analysis of these themes provides prospective research directions. This involved examining the contributions of individual articles with respect to their scope, value proposition, risk-type consideration, methodology and technique used, and their industry applications. The thematic analysis and extensive future research directions leverage the insights and potential of this review article.

Suggested Citation

  • Suryawanshi, Pravin & Dutta, Pankaj, 2022. "Optimization models for supply chains under risk, uncertainty, and resilience: A state-of-the-art review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:transe:v:157:y:2022:i:c:s1366554521003112
    DOI: 10.1016/j.tre.2021.102553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    2. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    3. AGHEZZAF, El-Houssaine, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," LIDAM Reprints CORE 1808, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    5. Kaur Arshinder & Arun Kanda & S. G. Deshmukh, 2011. "A Review on Supply Chain Coordination: Coordination Mechanisms, Managing Uncertainty and Research Directions," International Handbooks on Information Systems, in: Tsan-Ming Choi & T.C. Edwin Cheng (ed.), Supply Chain Coordination under Uncertainty, pages 39-82, Springer.
    6. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    7. Arıkan, Emel & Fichtinger, Johannes, 2017. "The risk-averse newsvendor problem under spectral risk measures: A classification with extensions," European Journal of Operational Research, Elsevier, vol. 256(1), pages 116-125.
    8. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    9. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    10. Chunguang Bai & Joseph Sarkis & Xiaopeng Wei, 2010. "Addressing key sustainable supply chain management issues using rough set methodology," Management Research Review, Emerald Group Publishing Limited, vol. 33(12), pages 1113-1127, November.
    11. Behzadi, Golnar & O'Sullivan, Michael Justin & Olsen, Tava Lennon & Scrimgeour, Frank & Zhang, Abraham, 2017. "Robust and resilient strategies for managing supply disruptions in an agribusiness supply chain," International Journal of Production Economics, Elsevier, vol. 191(C), pages 207-220.
    12. E Aghezzaf, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 453-462, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yılmaz, Ömer Faruk & Yeni, Fatma Betül & Gürsoy Yılmaz, Beren & Özçelik, Gökhan, 2023. "An optimization-based methodology equipped with lean tools to strengthen medical supply chain resilience during a pandemic: A case study from Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Mancini, Simona & Gansterer, Margaretha & Triki, Chefi, 2023. "Locker box location planning under uncertainty in demand and capacity availability," Omega, Elsevier, vol. 120(C).
    3. Li, Guo & Xue, Jing & Li, Na & Ivanov, Dmitry, 2022. "Blockchain-supported business model design, supply chain resilience, and firm performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    4. Jiachen Sun & Haiyan Wang & Zhimin Cui, 2023. "Alleviating the Bauxite Maritime Supply Chain Risks through Resilient Strategies: QFD-MCDM with Intuitionistic Fuzzy Decision Approach," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    5. Cao, Yunzhi & Zhu, Xiaoyan & Yan, Houmin, 2022. "Data-driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    6. Pardis Roozkhosh & Alireza Pooya & Renu Agarwal, 2023. "Blockchain acceptance rate prediction in the resilient supply chain with hybrid system dynamics and machine learning approach," Operations Management Research, Springer, vol. 16(2), pages 705-725, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    2. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    3. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    4. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    5. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    6. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    7. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    8. Ariane Kayser & Florian Sahling, 2023. "Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 1-35, March.
    9. J Gu & M Goetschalckx & L F McGinnis, 2010. "Solving the forward-reserve allocation problem in warehouse order picking systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1013-1021, June.
    10. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    11. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    12. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    13. Renato Matta, 2019. "Product costing in the strategic formation of a supply chain," Annals of Operations Research, Springer, vol. 272(1), pages 389-427, January.
    14. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities," Omega, Elsevier, vol. 74(C), pages 122-134.
    15. Aghezzaf, El-Houssaine, 2007. "Production planning and warehouse management in supply networks with inter-facility mold transfers," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1122-1139, November.
    16. An, Kun & Ouyang, Yanfeng, 2016. "Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 110-128.
    17. Huang, Edward & Goetschalckx, Marc, 2014. "Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 508-518.
    18. Kiya, Farhad & Davoudpour, Hamid, 2012. "Stochastic programming approach to re-designing a warehouse network under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 919-936.
    19. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    20. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:157:y:2022:i:c:s1366554521003112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.