IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i1p173-183.html
   My bibliography  Save this article

A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem

Author

Listed:
  • Aydin, Nezir
  • Murat, Alper

Abstract

We present a novel hybrid method, swarm intelligence based sample average approximation (SIBSAA), for solving the capacitated reliable facility location problem (CRFLP). The CRFLP extends the well-known capacitated fixed-cost facility problem by accounting for the unreliability of facilities. The standard SAA procedure, while effectively used in many applications, can lead to poor solution quality if the selected sample sizes are not sufficiently large. With larger sample sizes, however, the SAA method is not practical due to the significant computational effort required. The proposed SIBSAA method addresses this limitation by using smaller samples and repetitively applying the SAA method while injecting social learning in the solution process inspired by the swarm intelligence of particle swarm optimization. We report on experimental study results showing that the SIBSAA improves the computational efficiency significantly while attaining same or better solution quality than the SAA method.

Suggested Citation

  • Aydin, Nezir & Murat, Alper, 2013. "A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 173-183.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:173-183
    DOI: 10.1016/j.ijpe.2012.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312004604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Arostegui, Marvin Jr. & Kadipasaoglu, Sukran N. & Khumawala, Basheer M., 2006. "An empirical comparison of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities location problems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 742-754, October.
    3. Schütz, Peter & Tomasgard, Asgeir & Ahmed, Shabbir, 2009. "Supply chain design under uncertainty using sample average approximation and dual decomposition," European Journal of Operational Research, Elsevier, vol. 199(2), pages 409-419, December.
    4. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    5. Wang, K.-J. & Wang, S.-M. & Chen, J.-C., 2008. "A resource portfolio planning model using sampling-based stochastic programming and genetic algorithm," European Journal of Operational Research, Elsevier, vol. 184(1), pages 327-340, January.
    6. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    7. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    8. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    2. Roba W. Salem & Mohamed Haouari, 2017. "A simulation-optimisation approach for supply chain network design under supply and demand uncertainties," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1845-1861, April.
    3. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    4. Dimitrov, Nedialko B. & Solow, Daniel & Szmerekovsky, Joseph & Guo, Jia, 2017. "Emergency relocation of items using single trips: Special cases of the Multiple Knapsack Assignment Problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 938-942.
    5. Albareda-Sambola, Maria & Hinojosa, Yolanda & Puerto, Justo, 2015. "The reliable p-median problem with at-facility service," European Journal of Operational Research, Elsevier, vol. 245(3), pages 656-666.
    6. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    7. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    8. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    9. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2017. "Introducing capacities in the location of unreliable facilities," European Journal of Operational Research, Elsevier, vol. 259(1), pages 175-188.
    10. Huizhen Zhang & Cesar Beltran-Royo & Bo Wang & Ziying Zhang, 2019. "Two-phase semi-Lagrangian relaxation for solving the uncapacitated distribution centers location problem for B2C E-commerce," Computational Optimization and Applications, Springer, vol. 72(3), pages 827-848, April.
    11. Ghaderi, Abdolsalam & Burdett, Robert L., 2019. "An integrated location and routing approach for transporting hazardous materials in a bi-modal transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 49-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    2. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    3. Sebastián Arpón & Tito Homem-de-Mello & Bernardo K. Pagnoncelli, 2020. "An ADMM algorithm for two-stage stochastic programming problems," Annals of Operations Research, Springer, vol. 286(1), pages 559-582, March.
    4. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    5. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    6. Xing, Xinjie & Song, Dongping & Qiu, Chengfeng & Drake, Paul R. & Zhan, Yuanzhu, 2023. "Joint tank container demurrage policy and flow optimisation using a progressive hedging algorithm with expanded time-space network," European Journal of Operational Research, Elsevier, vol. 307(2), pages 663-679.
    7. Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
    8. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    9. Kabli, Mohannad & Quddus, Md Abdul & Nurre, Sarah G. & Marufuzzaman, Mohammad & Usher, John M., 2020. "A stochastic programming approach for electric vehicle charging station expansion plans," International Journal of Production Economics, Elsevier, vol. 220(C).
    10. Lin, Cheng-Chang & Wu, Yi-Chen, 2013. "Optimal pricing for build-to-order supply chain design under price-dependent stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 31-49.
    11. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    12. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    13. Huang, Edward & Mital, Pratik & Goetschalckx, Marc & Wu, Kan, 2016. "Optimal assignment of airport baggage unloading zones to outgoing flights," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 110-122.
    14. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    15. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    16. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    17. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.
    18. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2015. "Uncertainty propagation in a supply chain or supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 185-206.
    19. M. Fonseca & Álvaro García-Sánchez & Miguel Ortega-Mier & Francisco Saldanha-da-Gama, 2010. "A stochastic bi-objective location model for strategic reverse logistics," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 158-184, July.
    20. Roba W. Salem & Mohamed Haouari, 2017. "A simulation-optimisation approach for supply chain network design under supply and demand uncertainties," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1845-1861, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:173-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.