IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v182y2016icp230-252.html
   My bibliography  Save this article

An enhanced sample average approximation method for stochastic optimization

Author

Listed:
  • Emelogu, Adindu
  • Chowdhury, Sudipta
  • Marufuzzaman, Mohammad
  • Bian, Linkan
  • Eksioglu, Burak

Abstract

Choosing the appropriate sample size in Sample Average Approximation (SAA) method is very challenging. Inappropriate sample size can lead to the generation of low quality solutions with high computational burden. To overcome this challenge, our study proposes an enhanced SAA algorithm that utilizes clustering techniques to dynamically update the sample sizes and offers high quality solutions in a reasonable amount of time. We evaluate this proposed algorithm in the context of a facility location problem [FLP]. A number of numerical experiments (e.g., impact of different clustering techniques, fixed vs. dynamic clusters) are performed for various problem instances to illustrate the effectiveness of the proposed method. Results indicate that on average, enhanced SAA with fixed clustering size and dynamic clustering size solves [FLP] almost 631% and 699% faster than the basic SAA algorithm, respectively. Furthermore, it is observed that there is no single winner among the clustering techniques to solve all the problem instances of enhanced SAA algorithm and the performance is highly impacted by the size of the problems.

Suggested Citation

  • Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
  • Handle: RePEc:eee:proeco:v:182:y:2016:i:c:p:230-252
    DOI: 10.1016/j.ijpe.2016.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316302262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
    2. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    3. Tony J. Van Roy, 1986. "A Cross Decomposition Algorithm for Capacitated Facility Location," Operations Research, INFORMS, vol. 34(1), pages 145-163, February.
    4. Bastin, Fabian & Cirillo, Cinzia & Toint, Philippe L., 2006. "Application of an adaptive Monte Carlo algorithm to mixed logit estimation," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 577-593, August.
    5. Raghu Pasupathy, 2010. "On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation Optimization," Operations Research, INFORMS, vol. 58(4-part-1), pages 889-901, August.
    6. M. L. Balinski, 1965. "Integer Programming: Methods, Uses, Computations," Management Science, INFORMS, vol. 12(3), pages 253-313, November.
    7. G. Guerkan & A.Y. Oezge & S.M. Robinson, 1994. "Sample-Path Optimization in Simulation," Working Papers wp94070, International Institute for Applied Systems Analysis.
    8. Balaprakash, Prasanna & Birattari, Mauro & Stützle, Thomas & Dorigo, Marco, 2009. "Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 98-110, November.
    9. Monabbati, Ehsan & Kakhki, Hossein Taghizadeh, 2015. "On a class of subadditive duals for the uncapacitated facility location problem," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 118-131.
    10. Dupont, Lionel, 2008. "Branch and bound algorithm for a facility location problem with concave site dependent costs," International Journal of Production Economics, Elsevier, vol. 112(1), pages 245-254, March.
    11. Donald Erlenkotter, 1978. "A Dual-Based Procedure for Uncapacitated Facility Location," Operations Research, INFORMS, vol. 26(6), pages 992-1009, December.
    12. Saglam, Burcu & Salman, F. Sibel & Sayin, Serpil & Turkay, Metin, 2006. "A mixed-integer programming approach to the clustering problem with an application in customer segmentation," European Journal of Operational Research, Elsevier, vol. 173(3), pages 866-879, September.
    13. Barcelo, J. & Casanovas, J., 1984. "A heuristic lagrangean algorithm for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 15(2), pages 212-226, February.
    14. Richard M. Soland, 1974. "Optimal Facility Location with Concave Costs," Operations Research, INFORMS, vol. 22(2), pages 373-382, April.
    15. Jacobsen, Soren Kruse, 1983. "Heuristics for the capacitated plant location model," European Journal of Operational Research, Elsevier, vol. 12(3), pages 253-261, March.
    16. Rubinstein, Reuven Y. & Shapiro, Alexander, 1990. "Optimization of static simulation models by the score function method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(4), pages 373-392.
    17. E. Feldman & F. A. Lehrer & T. L. Ray, 1966. "Warehouse Location Under Continuous Economies of Scale," Management Science, INFORMS, vol. 12(9), pages 670-684, May.
    18. Schütz, Peter & Tomasgard, Asgeir & Ahmed, Shabbir, 2009. "Supply chain design under uncertainty using sample average approximation and dual decomposition," European Journal of Operational Research, Elsevier, vol. 199(2), pages 409-419, December.
    19. Güzin Bayraksan & David P. Morton, 2011. "A Sequential Sampling Procedure for Stochastic Programming," Operations Research, INFORMS, vol. 59(4), pages 898-913, August.
    20. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    21. Fabian Bastin & Cinzia Cirillo & Philippe Toint, 2006. "An adaptive Monte Carlo algorithm for computing mixed logit estimators," Computational Management Science, Springer, vol. 3(1), pages 55-79, January.
    22. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    23. Francesca Maggioni & Michal Kaut & Luca Bertazzi, 2009. "Stochastic optimization models for a single-sink transportation problem," Computational Management Science, Springer, vol. 6(2), pages 251-267, May.
    24. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    25. Umit Akinc & Basheer M. Khumawala, 1977. "An Efficient Branch and Bound Algorithm for the Capacitated Warehouse Location Problem," Management Science, INFORMS, vol. 23(6), pages 585-594, February.
    26. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    27. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    28. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    29. Johannes O. Royset & Roberto Szechtman, 2013. "Optimal Budget Allocation for Sample Average Approximation," Operations Research, INFORMS, vol. 61(3), pages 762-776, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifeng Zheng & Kezheng Chen & Ming Liu, 2023. "Optimization of Communication Base Station Battery Configuration Considering Demand Transfer and Sleep Mechanism under Uncertain Interruption Duration," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    2. Hu, Shaolong & Hu, Qingmi & Tao, Sha & Dong, Zhijie Sasha, 2023. "A multi-stage stochastic programming approach for pre-positioning of relief supplies considering returns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    4. Zhou, Liping & Geng, Na & Jiang, Zhibin & Wang, Xiuxian, 2018. "Multi-objective capacity allocation of hospital wards combining revenue and equity," Omega, Elsevier, vol. 81(C), pages 220-233.
    5. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    6. Vladimir Beresnev & Andrey Melnikov, 2020. "$$\varepsilon $$ε-Constraint method for bi-objective competitive facility location problem with uncertain demand scenario," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 33-59, March.
    7. Yilun Zhang & Jianghang Chen & Zhibin Jiang, 2023. "Optimal product service system configuration considering pairing utility and uncertain customer behavior," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 343-375, June.
    8. Torraca, Ana Patrícia & Fanzeres, Bruno, 2021. "Optimal insurance contract specification in the upstream sector of the oil and gas industry," European Journal of Operational Research, Elsevier, vol. 295(2), pages 718-732.
    9. Dapeng Yang & Daqing Wu & Luyan Shi, 2019. "Distribution-Free Stochastic Closed-Loop Supply Chain Design Problem with Financial Management," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    10. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    11. Du, Jiaoman & Zhou, Jiandong & Li, Xiang & Li, Lei & Guo, Ao, 2021. "Integrated self-driving travel scheme planning," International Journal of Production Economics, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, R.R.K. & Berry, V., 2007. "Developing new formulations and relaxations of single stage capacitated warehouse location problem (SSCWLP): Empirical investigation for assessing relative strengths and computational effort," European Journal of Operational Research, Elsevier, vol. 177(2), pages 803-812, March.
    2. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    3. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    4. Fathali Firoozi, 2008. "Boundary Distributions in Testing Inequality Hypotheses," Working Papers 0046, College of Business, University of Texas at San Antonio.
    5. Minghe Sun & Zhen-Yu Chen & Zhi-Ping Fan, 2014. "A Multi-task Multi-kernel Transfer Learning Method for Customer Response Modeling in Social Media," Working Papers 0161mss, College of Business, University of Texas at San Antonio.
    6. Dupont, Lionel, 2008. "Branch and bound algorithm for a facility location problem with concave site dependent costs," International Journal of Production Economics, Elsevier, vol. 112(1), pages 245-254, March.
    7. Minghe Sun, 2008. "A Tabu Search Heuristic Procedure for the Capacitated Facility Location Problem," Working Papers 0050, College of Business, University of Texas at San Antonio.
    8. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    9. Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
    10. Alejandro Montoya & Mario C. Vélez–Gallego & Juan G. Villegas, 2016. "Multi-product capacitated facility location problem with general production and building costs," Netnomics, Springer, vol. 17(1), pages 47-70, July.
    11. Ramesh Bollapragada & Uday S. Rao & Junying Wu, 2023. "Hub location–allocation for combined fixed-wireless and wireline broadband access networks," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 50(1), pages 115-128, March.
    12. Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
    13. Sridharan, R., 1995. "The capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 87(2), pages 203-213, December.
    14. Vedat Verter & M. Cemal Dincer, 1995. "Facility location and capacity acquisition: An integrated approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1141-1160, December.
    15. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    16. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    17. Rebecca Stockbridge & Güzin Bayraksan, 2016. "Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 407-431, June.
    18. Klose, Andreas, 2000. "A Lagrangean relax-and-cut approach for the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 126(2), pages 408-421, October.
    19. Johannes O. Royset & Roberto Szechtman, 2013. "Optimal Budget Allocation for Sample Average Approximation," Operations Research, INFORMS, vol. 61(3), pages 762-776, June.
    20. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:182:y:2016:i:c:p:230-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.