IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5241-d1098472.html
   My bibliography  Save this article

Simulation of Low Carbon Layout Optimization of Disassembly Line Based on SLP Method

Author

Listed:
  • Jia Mao

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Jinyuan Cheng

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Xiangyu Li

    (College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Honggang Zhao

    (College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China)

  • Dexin Yu

    (School of Navigation, Jimei University, Xiamen 361021, China)

Abstract

New concepts such as low-carbon economy, low-carbon production, low-carbon living and even low-carbon cities have become popular topics in environmental protection. The disassembly line part of reverse logistics is accompanied by high carbon emission, which is contrary to the original intention of sustainable development. In this paper, we design a systematic low-carbon layout for the disassembly line of the logistics processing center to address the problem of high carbon emissions caused by the unreasonable layout of the disassembly line. Taking the disassembly line in the logistics center of Company H as the research object, the process of the disassembly line is analyzed, and the SLP analysis method is applied to analyze the material flow and the material flow intensity level of the disassembly line layout, and three different optimization schemes are derived. Flexsim software was used to model and run the three initial layout schemes of the disassembly line, and the data related to the waiting time operation of each scheme were obtained. Finally, carbon emission and other disassembly-line-related indicators were introduced and weights were set, and the results were subjected to weighted gray correlation analysis to arrive at the optimal disassembly line layout optimization scheme. This study will provide reference for other reverse logistics processing center layout studies.

Suggested Citation

  • Jia Mao & Jinyuan Cheng & Xiangyu Li & Honggang Zhao & Dexin Yu, 2023. "Simulation of Low Carbon Layout Optimization of Disassembly Line Based on SLP Method," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5241-:d:1098472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    2. Devika Kannan & Kiran Garg & P. C. Jha & Ali Diabat, 2017. "Integrating disassembly line balancing in the planning of a reverse logistics network from the perspective of a third party provider," Annals of Operations Research, Springer, vol. 253(1), pages 353-376, June.
    3. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira Neto, Geraldo Cardoso & de Jesus Cardoso Correia, Auro & Schroeder, Adriano Michelotti, 2017. "Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 42-55.
    2. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    3. Shubham Kumar Singh & Anand Chauhan & Biswajit Sarkar, 2022. "Supply Chain Management of E-Waste for End-of-Life Electronic Products with Reverse Logistics," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    4. Gazi Murat Duman & Elif Kongar, 2023. "ESG Modeling and Prediction Uncertainty of Electronic Waste," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    5. Rui Li & Xin Chen, 2022. "Reverse Logistics Network Design under Disruption Risk for Third-Party Logistics Providers," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    6. Nakatani, Jun & Konno, Kiyoto & Moriguchi, Yuichi, 2017. "Variability-based optimal design for robust plastic recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 53-60.
    7. Eirill Bø & John Baxter, 2020. "Transparency as a Driver for Logistical Efficiency in WEEE Collection and Transport," Logistics, MDPI, vol. 4(3), pages 1-13, July.
    8. Ciro Henrique de Araújo Fernandes & Lucio Camara e Silva & Patricia Guarnieri & Bárbara de Oliveira Vieira, 2021. "Multicriteria Model Proposition to Support the Management of Systems of E-Waste Collection," Logistics, MDPI, vol. 5(3), pages 1-20, September.
    9. Jagannath Roy & Dragan Pamučar & Samarjit Kar, 2020. "Evaluation and selection of third party logistics provider under sustainability perspectives: an interval valued fuzzy-rough approach," Annals of Operations Research, Springer, vol. 293(2), pages 669-714, October.
    10. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Olga Lingaitienė & Aurelija Burinskienė & Vida Davidavičienė, 2022. "Case Study of Municipal Waste and Its Reliance on Reverse Logistics in European Countries," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    12. Lin Zhao & Zongyu Mu, 2021. "Channel Strategies for the Two-Period Closed-Loop Supply Chain with E-Commerce," Mathematics, MDPI, vol. 9(11), pages 1-33, June.
    13. Tamás Bányai & Péter Tamás & Béla Illés & Živilė Stankevičiūtė & Ágota Bányai, 2019. "Optimization of Municipal Waste Collection Routing: Impact of Industry 4.0 Technologies on Environmental Awareness and Sustainability," IJERPH, MDPI, vol. 16(4), pages 1-26, February.
    14. Mpho Sharon Makgedi Makaleng & Progress Hove-Sibanda, 2022. "Reverse Logistics Strategies and Their Effect on the Competitiveness of Fast-Moving Consumer Goods Firms in South Africa," Logistics, MDPI, vol. 6(3), pages 1-26, August.
    15. Hao Guo & Ying Zhang & Chunnan Zhang & Yu Liu & Yuan Zhou, 2020. "Location-inventory decisions for closed-loop supply chain management in the presence of the secondary market," Annals of Operations Research, Springer, vol. 291(1), pages 361-386, August.
    16. Patricia Guarnieri & Lucio Camara e Silva & Bárbara de Oliveira Vieira, 2020. "How to Assess Reverse Logistics of e-Waste Considering a Multicriteria Perspective? A Model Proposition," Logistics, MDPI, vol. 4(4), pages 1-31, October.
    17. Peng Li & Di Wu, 2021. "A Multi-Echelon Network Design in a Dual-Channel Reverse Supply Chain Considering Consumer Preference," IJERPH, MDPI, vol. 18(9), pages 1-24, April.
    18. Xiaoqing Zhang & Wantong Chen & Min Wang & Dalin Zhang, 2022. "Optimal Decisions in Green, Low-Carbon Supply Chain Considering the Competition and Cooperation Relationships between Different Types of Manufacturers," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    19. Hao Guo & Congdong Li & Ying Zhang & Chunnan Zhang & Mengmeng Lu, 2018. "A Location-Inventory Problem in a Closed-Loop Supply Chain with Secondary Market Consideration," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    20. Diri Kenger, Zülal & Koç, Çağrı & Özceylan, Eren, 2021. "Integrated disassembly line balancing and routing problem with mobile additive manufacturing," International Journal of Production Economics, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5241-:d:1098472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.