IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v100y2015icp58-69.html
   My bibliography  Save this article

Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing

Author

Listed:
  • Zhou, Xiaoguang
  • Zhou, Yanhui

Abstract

To develop a circular and low-carbon economy, it is important to recycle and reuse office supplies, particularly office paper. We have analyzed the characteristics of office paper reverse logistics and propose an appropriate operation mode: a strategic alliance and third-party reverse logistics union led by a government or non-profit organizations and including office paper producers. We propose a nonlinear integer programming model for determining the locations and numbers of recycling stations and plants, such that the total cost is minimized. A case study of selected sites along the Xueyuan Road in Beijing is used to illustrate the proposed model. Additionally, our sensitivity analyses investigated how the amount of waste office paper, the throughput capacity of recycling stations, and the unit transportation cost affected the optimized results. Our findings provide useful insights for various stakeholders and suggest avenues for further research.

Suggested Citation

  • Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.
  • Handle: RePEc:eee:recore:v:100:y:2015:i:c:p:58-69
    DOI: 10.1016/j.resconrec.2015.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915000877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoudzadeh, Mahdi & Mansour, Saeed & Karimi, Behrouz, 2013. "To develop a third-party reverse logistics network for end-of-life vehicles in Iran," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 1-14.
    2. Francis M Vanek, 2000. "The Transportation – Production Tradeoff in the Regional Environmental Impact of Industrial Systems: A Case Study in the Paper Sector," Environment and Planning A, , vol. 32(5), pages 817-832, May.
    3. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    4. Amini, M. Mehdi & Retzlaff-Roberts, Donna & Bienstock, Carol C., 2005. "Designing a reverse logistics operation for short cycle time repair services," International Journal of Production Economics, Elsevier, vol. 96(3), pages 367-380, June.
    5. Niknejad, A. & Petrovic, D., 2014. "Optimisation of integrated reverse logistics networks with different product recovery routes," European Journal of Operational Research, Elsevier, vol. 238(1), pages 143-154.
    6. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    7. Pati, Rupesh Kumar & Vrat, Prem & Kumar, Pradeep, 2008. "A goal programming model for paper recycling system," Omega, Elsevier, vol. 36(3), pages 405-417, June.
    8. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Hu, Chun-Chia, 2005. "An integrated logistics operational model for green-supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 287-313, July.
    9. Achillas, Ch. & Aidonis, D. & Vlachokostas, Ch. & Moussiopoulos, N. & Banias, G. & Triantafillou, D., 2012. "A multi-objective decision-making model to select waste electrical and electronic equipment transportation media," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 76-84.
    10. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco & Verter, Vedat, 2012. "Multi-period reverse logistics network design," European Journal of Operational Research, Elsevier, vol. 220(1), pages 67-78.
    11. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    12. Kara, S. & Rugrungruang, F. & Kaebernick, H., 2007. "Simulation modelling of reverse logistics networks," International Journal of Production Economics, Elsevier, vol. 106(1), pages 61-69, March.
    13. Kleineidam, U. & Lambert, A. J. D. & Blansjaar, J. & Kok, J. J. & van Heijningen, R. J. J., 2000. "Optimising product recycling chains by control theory," International Journal of Production Economics, Elsevier, vol. 66(2), pages 185-195, June.
    14. Das, Kanchan & Chowdhury, Abdul H., 2012. "Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning," International Journal of Production Economics, Elsevier, vol. 135(1), pages 209-221.
    15. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    16. Arminen, Heli & Hujala, Maija & Puumalainen, Kaisu & Tuppura, Anni & Toppinen, Anne, 2013. "An update on inter-country differences in recovery and utilization of recycled paper," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 124-135.
    17. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    18. Counsell, Thomas A.M. & Allwood, Julian M., 2007. "Reducing climate change gas emissions by cutting out stages in the life cycle of office paper," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 340-352.
    19. Bloemhof-Ruwaard, J. M. & Van Wassenhove, L. N. & Gabel, H. L. & Weaver, P. M., 1996. "An environmental life cycle optimization model for the European pulp and paper industry," Omega, Elsevier, vol. 24(6), pages 615-629, December.
    20. Jayaraman, Vaidyanathan & Patterson, Raymond A. & Rolland, Erik, 2003. "The design of reverse distribution networks: Models and solution procedures," European Journal of Operational Research, Elsevier, vol. 150(1), pages 128-149, October.
    21. Bogataj, Marija & Grubbström, Robert W. & Bogataj, Ludvik, 2011. "Efficient location of industrial activity cells in a global supply chain," International Journal of Production Economics, Elsevier, vol. 133(1), pages 243-250, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    2. Nakatani, Jun & Konno, Kiyoto & Moriguchi, Yuichi, 2017. "Variability-based optimal design for robust plastic recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 53-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    2. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    3. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    4. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    5. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    6. García-Rodríguez, Francisco J. & Castilla-Gutiérrez, Carlos & Bustos-Flores, Carlos, 2013. "Implementation of reverse logistics as a sustainable tool for raw material purchasing in developing countries: The case of Venezuela," International Journal of Production Economics, Elsevier, vol. 141(2), pages 582-592.
    7. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    8. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    9. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    10. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    11. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    12. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.
    13. Aksen, Deniz & Aras, Necati & Karaarslan, Ayse Gönül, 2009. "Design and analysis of government subsidized collection systems for incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 119(2), pages 308-327, June.
    14. Vahdani, Behnam & Tavakkoli-Moghaddam, Reza & Modarres, Mohammad & Baboli, Armand, 2012. "Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1152-1168.
    15. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    16. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    17. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    18. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    19. Eskandarpour, Majid & Zegordi, Seyed Hessameddin & Nikbakhsh, Ehsan, 2013. "A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 117-131.
    20. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2017. "Closed-loop supply chain network design under uncertain quality status: Case of durable products," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 470-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:100:y:2015:i:c:p:58-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.