IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i1p143-154.html
   My bibliography  Save this article

Optimisation of integrated reverse logistics networks with different product recovery routes

Author

Listed:
  • Niknejad, A.
  • Petrovic, D.

Abstract

The awareness of importance of product recovery has grown swiftly in the past few decades. This paper focuses on a problem of inventory control and production planning optimisation of a generic type of an integrated Reverse Logistics (RL) network which consists of a traditional forward production route, two alternative recovery routes, including repair and remanufacturing and a disposal route. It is assumed that demand and return quantities are uncertain. A quality level is assigned to each of the returned products. Due to uncertainty in the return quantity, quantity of returned products of a certain quality level is uncertain too. The uncertainties are modelled using fuzzy trapezoidal numbers. Quality thresholds are used to segregate the returned products into repair, remanufacturing or disposal routes. A two phase fuzzy mixed integer optimisation algorithm is developed to provide a solution to the inventory control and production planning problem. In Phase 1, uncertainties in quantity of product returns and quality of returns are considered to calculate the quantities to be sent to different recovery routes. These outputs are inputs into Phase 2 which generates decisions on component procurement, production, repair and disassembly. Finally, numerical experiments and sensitivity analysis are carried out to better understand the effects of quality of returns and RL network parameters on the network performance. These parameters include quantity of returned products, unit repair costs, unit production cost, setup costs and unit disposal cost.

Suggested Citation

  • Niknejad, A. & Petrovic, D., 2014. "Optimisation of integrated reverse logistics networks with different product recovery routes," European Journal of Operational Research, Elsevier, vol. 238(1), pages 143-154.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:143-154
    DOI: 10.1016/j.ejor.2014.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lebreton, Baptiste & Tuma, Axel, 2006. "A quantitative approach to assessing the profitability of car and truck tire remanufacturing," International Journal of Production Economics, Elsevier, vol. 104(2), pages 639-652, December.
    2. Mukhopadhyay, Samar K. & Ma, Huafan, 2009. "Joint procurement and production decisions in remanufacturing under quality and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 120(1), pages 5-17, July.
    3. V. Daniel R. Guide & Luc Muyldermans & Luk N. Van Wassenhove, 2005. "Hewlett-Packard Company Unlocks the Value Potential from Time-Sensitive Returns," Interfaces, INFORMS, vol. 35(4), pages 281-293, August.
    4. Guo, Shanshan & Aydin, Goker & Souza, Gilvan C., 2014. "Dismantle or remanufacture?," European Journal of Operational Research, Elsevier, vol. 233(3), pages 580-583.
    5. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Sustainable SC through the complete reprocessing of end-of-life products by manufacturers: A traditional versus social responsibility company perspective," European Journal of Operational Research, Elsevier, vol. 233(2), pages 359-373.
    6. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    7. Herrera, F. & Verdegay, J. L., 1995. "Three models of fuzzy integer linear programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 581-593, June.
    8. Nenes, George & Panagiotidou, Sofia & Dekker, Rommert, 2010. "Inventory control policies for inspection and remanufacturing of returns: A case study," International Journal of Production Economics, Elsevier, vol. 125(2), pages 300-312, June.
    9. Yoo, Seung Ho & Kim, DaeSoo & Park, Myung-Sub, 2012. "Lot sizing and quality investment with quality cost analyses for imperfect production and inspection processes with commercial return," International Journal of Production Economics, Elsevier, vol. 140(2), pages 922-933.
    10. Dobos, Imre & Richter, Knut, 2006. "A production/recycling model with quality consideration," International Journal of Production Economics, Elsevier, vol. 104(2), pages 571-579, December.
    11. Petrovic, Dobrila & Xie, Ying & Burnham, Keith & Petrovic, Radivoj, 2008. "Coordinated control of distribution supply chains in the presence of fuzzy customer demand," European Journal of Operational Research, Elsevier, vol. 185(1), pages 146-158, February.
    12. Das, Kanchan & Chowdhury, Abdul H., 2012. "Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning," International Journal of Production Economics, Elsevier, vol. 135(1), pages 209-221.
    13. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    14. Zikopoulos, Christos & Tagaras, George, 2007. "Impact of uncertainty in the quality of returns on the profitability of a single-period refurbishing operation," European Journal of Operational Research, Elsevier, vol. 182(1), pages 205-225, October.
    15. Mitra, Subrata, 2007. "Revenue management for remanufactured products," Omega, Elsevier, vol. 35(5), pages 553-562, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Gang & Gunasekaran, Angappa, 2017. "Operations scheduling in reverse supply chains: Identical demand and delivery deadlines," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 375-381.
    2. Kai Meng & Xiaoming Qian & Peihuang Lou & Jiong Zhang, 2020. "Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 183-197, January.
    3. Zikopoulos, Christos & Tagaras, George, 2015. "Reverse supply chains: Effects of collection network and returns classification on profitability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 435-449.
    4. Vahid Azizi & Guiping Hu, 2021. "A Multi-Stage Stochastic Programming Model for the Multi-Echelon Multi-Period Reverse Logistics Problem," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    5. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    6. Banguera, Leonardo A. & Sepúlveda, Juan M. & Ternero, Rodrigo & Vargas, Manuel & Vásquez, Óscar C., 2018. "Reverse logistics network design under extended producer responsibility: The case of out-of-use tires in the Gran Santiago city of Chile," International Journal of Production Economics, Elsevier, vol. 205(C), pages 193-200.
    7. Eiji B. Hosoda & Masashi Yamamoto, 2021. "Transportation costs of vehicle recycling under Hotelling’s Duopoly competition," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 48(1), pages 77-91, March.
    8. Panagiotidou, Sofia & Nenes, George & Zikopoulos, Christos & Tagaras, George, 2017. "Joint optimization of manufacturing/remanufacturing lot sizes under imperfect information on returns quality," European Journal of Operational Research, Elsevier, vol. 258(2), pages 537-551.
    9. Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.
    10. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    11. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    12. Kannan Govindan & Vernika Agarwal & Jyoti Dhingra Darbari & P. C. Jha, 2019. "An integrated decision making model for the selection of sustainable forward and reverse logistic providers," Annals of Operations Research, Springer, vol. 273(1), pages 607-650, February.
    13. Utama, Dana Marsetiya & Santoso, Imam & Hendrawan, Yusuf & Dania, Wike Agustin Prima, 2022. "Integrated procurement-production inventory model in supply chain: A systematic review," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Xiao-ping Bai & Xiu-weng Wang, 2020. "A Novel Planning Method of Urban Building Wastes for Environment Protection and Sustainable Development," SAGE Open, , vol. 10(4), pages 21582440209, November.
    15. Chen, Daqiang & Ignatius, Joshua & Sun, Danzhi & Zhan, Shalei & Zhou, Chenyu & Marra, Marianna & Demirbag, Mehmet, 2019. "Reverse logistics pricing strategy for a green supply chain: A view of customers' environmental awareness," International Journal of Production Economics, Elsevier, vol. 217(C), pages 197-210.
    16. Christian Scheller & Kerstin Schmidt & Thomas Stefan Spengler, 2021. "Decentralized master production and recycling scheduling of lithium-ion batteries: a techno-economic optimization model," Journal of Business Economics, Springer, vol. 91(2), pages 253-282, March.
    17. Scheller, Christian & Schmidt, Kerstin & Spengler, Thomas S., 2023. "Effects of network structures on the production planning in closed-loop supply chains – A case study based analysis for lithium-ion batteries in Europe," International Journal of Production Economics, Elsevier, vol. 262(C).
    18. Ozden Tozanli & Gazi Murat Duman & Elif Kongar & Surendra M. Gupta, 2017. "Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey," Logistics, MDPI, vol. 1(1), pages 1-42, June.
    19. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    20. Yongbo Li & Devika Kannan & P. C. Jha & Kiran Garg & Jyoti Darbari & Neha Agarwal, 2023. "Design of a multi echelon product recovery embeded reverse logistics network for multi products and multi periods," Annals of Operations Research, Springer, vol. 323(1), pages 131-152, April.
    21. Kai Meng & Peihuang Lou & Xianghui Peng & Victor Prybutok, 2017. "Quality-driven recovery decisions for used components in reverse logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4712-4728, August.
    22. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    23. Baptista, Susana & Barbosa-Póvoa, Ana Paula & Escudero, Laureano F. & Gomes, Maria Isabel & Pizarro, Celeste, 2019. "On risk management of a two-stage stochastic mixed 0–1 model for the closed-loop supply chain design problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 91-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    2. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    3. Jena, Sarat Kumar & Sarmah, S.P., 2016. "Price and service co-opetiton under uncertain demand and condition of used items in a remanufacturing system," International Journal of Production Economics, Elsevier, vol. 173(C), pages 1-21.
    4. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    5. Sgarbossa, Fabio & Russo, Ivan, 2017. "A proactive model in sustainable food supply chain: Insight from a case study," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 596-606.
    6. Shuihua Han & Weina Ma & Ling Zhao & Xuelian Zhang & Ming K. Lim & Shuangyuan Yang & Stephen Leung, 2016. "A robust optimisation model for hybrid remanufacturing and manufacturing systems under uncertain return quality and market demand," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5056-5072, September.
    7. Poles, Roberto, 2013. "System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies," International Journal of Production Economics, Elsevier, vol. 144(1), pages 189-199.
    8. Gan, Shu-San & Pujawan, I Nyoman & Suparno, & Widodo, Basuki, 2018. "Pricing decisions for short life-cycle product in a closed-loop supply chain with random yield and random demands," Operations Research Perspectives, Elsevier, vol. 5(C), pages 174-190.
    9. Krikke, Harold & Hofenk, Dianne & Wang, Yacan, 2013. "Revealing an invisible giant: A comprehensive survey into return practices within original (closed-loop) supply chains," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 239-250.
    10. Tsai, Wen-Hsien & Hung, Shih-Jieh, 2009. "Dynamic pricing and revenue management process in Internet retailing under uncertainty: An integrated real options approach," Omega, Elsevier, vol. 37(2), pages 471-481, April.
    11. Hong Sun & Yan Li, 2023. "Optimal Acquisition and Production Policies for Remanufacturing with Quality Grading," Mathematics, MDPI, vol. 11(7), pages 1-21, March.
    12. Georgiadis, Patroklos & Athanasiou, Efstratios, 2010. "The impact of two-product joint lifecycles on capacity planning of remanufacturing networks," European Journal of Operational Research, Elsevier, vol. 202(2), pages 420-433, April.
    13. Liu, Huihui & Lei, Ming & Deng, Honghui & Keong Leong, G. & Huang, Tao, 2016. "A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy," Omega, Elsevier, vol. 59(PB), pages 290-302.
    14. Senlin Zhao & Qinghua Zhu, 2017. "Remanufacturing supply chain coordination under the stochastic remanufacturability rate and the random demand," Annals of Operations Research, Springer, vol. 257(1), pages 661-695, October.
    15. Jaber, Mohamad Y. & Rosen, Marc A., 2008. "The economic order quantity repair and waste disposal model with entropy cost," European Journal of Operational Research, Elsevier, vol. 188(1), pages 109-120, July.
    16. Felix T.S. Chan & Nan Li & S.H. Chung & Mozafar Saadat, 2017. "Management of sustainable manufacturing systems-a review on mathematical problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1210-1225, February.
    17. Wu, Cheng-Han, 2013. "OEM product design in a price competition with remanufactured product," Omega, Elsevier, vol. 41(2), pages 287-298.
    18. Gan, Shu-San & Pujawan, I. Nyoman & Suparno, & Widodo, Basuki, 2017. "Pricing decision for new and remanufactured product in a closed-loop supply chain with separate sales-channel," International Journal of Production Economics, Elsevier, vol. 190(C), pages 120-132.
    19. Ferguson, M. & Fleischmann, M. & Souza, G.C., 2008. "Applying Revenue Management to the Reverse Supply Chain," ERIM Report Series Research in Management ERS-2008-052-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Taleizadeh, Ata Allah & Moshtagh, Mohammad Sadegh, 2019. "A consignment stock scheme for closed loop supply chain with imperfect manufacturing processes, lost sales, and quality dependent return: Multi Levels Structure," International Journal of Production Economics, Elsevier, vol. 217(C), pages 298-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:143-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.