IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v238y2021ics092552732100133x.html
   My bibliography  Save this article

Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0

Author

Listed:
  • Chen, Yi-Ting
  • Sun, Edward W.
  • Chang, Ming-Feng
  • Lin, Yi-Bing

Abstract

When studying the vehicle routing problem, especially for on-time arrivals, the determination of travel time plays a decisive role in the optimization of logistics companies. Traffic Internet of Things (IoT) connects ubiquitous devices and collects data from various channels like traffic cameras, vehicle detectors, GPS, sensors, etc. that can be used to analyze real-time traffic status and eventually increase the efficiency of logistics management for Logistics 4.0. However, big IoT data contain joint features that interact non-linearly and complicatedly, thus increasing the stochastic nature and difficulty of determining travel time on real-time basis. This research proposes a novel method (named the gradient boosting partitioned regression tree model) to forecast travel time based on big data collected from the industrial IoT infrastructure. The proposed method separates the global regression tree model based on the gradient boosting decision tree into several partitions to capture the time-varying features simultaneously – that is, to subdivide the non-linearity into fragments and to characterize the feature interactions in a manageable way with recursive partitions. We illustrate several analytical properties with manageable advantages in terms of big data analytics of the proposed method and apply it to real traffic IoT data. Findings of this research show that the proposed method performs successfully at enhancing the predictive accuracy of travel time after empirically comparing it with other computational methods.

Suggested Citation

  • Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:proeco:v:238:y:2021:i:c:s092552732100133x
    DOI: 10.1016/j.ijpe.2021.108157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552732100133X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Sven Winkelhaus & Eric H. Grosse, 2020. "Logistics 4.0: a systematic review towards a new logistics system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(1), pages 18-43, January.
    3. Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
    4. R. R. Snell & M. L. Funk & L. T. Fan & F. A. Tillman & J. J. Wang, 1968. "Travel Assignment with a Nonlinear Travel-Time Function," Transportation Science, INFORMS, vol. 2(2), pages 146-159, May.
    5. Lersteau, Charly & Rossi, André & Sevaux, Marc, 2016. "Robust scheduling of wireless sensor networks for target tracking under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 407-417.
    6. Qiu, Xuan & Luo, Hao & Xu, Gangyan & Zhong, Runyang & Huang, George Q., 2015. "Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP)," International Journal of Production Economics, Elsevier, vol. 159(C), pages 4-15.
    7. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    8. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    9. Cenamor, J. & Rönnberg Sjödin, D. & Parida, V., 2017. "Adopting a platform approach in servitization: Leveraging the value of digitalization," International Journal of Production Economics, Elsevier, vol. 192(C), pages 54-65.
    10. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    11. Tayi, Giri K. & Rosenkrantz, Daniel J. & Ravi, S. S., 2004. "Local base station assignment with time intervals in mobile computing environments," European Journal of Operational Research, Elsevier, vol. 157(2), pages 267-285, September.
    12. Pi, Xidong & Qian, Zhen (Sean), 2017. "A stochastic optimal control approach for real-time traffic routing considering demand uncertainties and travelers’ choice heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 710-732.
    13. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    14. Hoogeboom, Maaike & Dullaert, Wout, 2019. "Vehicle routing with arrival time diversification," European Journal of Operational Research, Elsevier, vol. 275(1), pages 93-107.
    15. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    16. Ferrucci, Francesco & Bock, Stefan, 2016. "Pro-active real-time routing in applications with multiple request patterns," European Journal of Operational Research, Elsevier, vol. 253(2), pages 356-371.
    17. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    18. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    19. Tebaldi, Claudia & West, Mike & Karr, Alan F, 2002. "Statistical Analyses of Freeway Traffic Flows," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(1), pages 39-68, January.
    20. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    21. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    22. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    23. W. J. Hurley & E. R. Petersen, 1994. "Nonlinear Tariffs and Freight Network Equilibrium," Transportation Science, INFORMS, vol. 28(3), pages 236-245, August.
    24. Bogataj, Marija & Grubbström, Robert W., 2013. "Transportation delays in reverse logistics," International Journal of Production Economics, Elsevier, vol. 143(2), pages 395-402.
    25. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    26. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    27. Dia, Hussein, 2001. "An object-oriented neural network approach to short-term traffic forecasting," European Journal of Operational Research, Elsevier, vol. 131(2), pages 253-261, June.
    28. Winkelhaus, S. & Grosse, E. H., 2020. "Logistics 4.0: a systematic review towards a new logistics system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118539, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    29. Mohamed Ben-Daya & Elkafi Hassini & Zied Bahroun, 2019. "Internet of things and supply chain management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4719-4742, August.
    30. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
    31. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    32. Raghavan, S. & Sahin, Mustafa & Salman, F. Sibel, 2019. "The capacitated mobile facility location problem," European Journal of Operational Research, Elsevier, vol. 277(2), pages 507-520.
    33. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    34. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    35. Nativi, Juan Jose & Lee, Seokcheon, 2012. "Impact of RFID information-sharing strategies on a decentralized supply chain with reverse logistics operations," International Journal of Production Economics, Elsevier, vol. 136(2), pages 366-377.
    36. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    37. Bogataj, David & Bogataj, Marija & Hudoklin, Domen, 2017. "Mitigating risks of perishable products in the cyber-physical systems based on the extended MRP model," International Journal of Production Economics, Elsevier, vol. 193(C), pages 51-62.
    38. Laoucine Kerbache & T. van Woensel & N. Vandaele & Herbert Peremans, 2008. "Vehicle routing with dynamic travel times: A queueing approach," Post-Print hal-00465127, HAL.
    39. Sun, Edward W. & Chen, Yi-Ting & Yu, Min-Teh, 2015. "Generalized optimal wavelet decomposing algorithm for big financial data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 194-214.
    40. Mintsis, G. & Basbas, S. & Papaioannou, P. & Taxiltaris, C. & Tziavos, I. N., 2004. "Applications of GPS technology in the land transportation system," European Journal of Operational Research, Elsevier, vol. 152(2), pages 399-409, January.
    41. Chen, Yi-Ting & Sun, Edward W. & Lin, Yi-Bing, 2020. "Merging anomalous data usage in wireless mobile telecommunications: Business analytics with a strategy-focused data-driven approach for sustainability," European Journal of Operational Research, Elsevier, vol. 281(3), pages 687-705.
    42. Reyes, Pedro M. & Li, Suhong & Visich, John K., 2016. "Determinants of RFID adoption stage and perceived benefits," European Journal of Operational Research, Elsevier, vol. 254(3), pages 801-812.
    43. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    44. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    45. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    46. Ballis, Haris & Dimitriou, Loukas, 2020. "Revealing personal activities schedules from synthesizing multi-period origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 224-258.
    47. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
    48. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    49. Arıkan, Emel & Fichtinger, Johannes & Ries, Jörg M., 2014. "Impact of transportation lead-time variability on the economic and environmental performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 157(C), pages 279-288.
    50. Coronado Mondragon, Adrian E. & Lalwani, Chandra S. & Coronado Mondragon, Etienne S. & Coronado Mondragon, Christian E. & Pawar, Kulwant S., 2012. "Intelligent transport systems in multimodal logistics: A case of role and contribution through wireless vehicular networks in a sea port location," International Journal of Production Economics, Elsevier, vol. 137(1), pages 165-175.
    51. Arikan, E. & Fichtinger, J. & Ries, J. M., 2014. "Impact of transportation lead-time variability on the economic and environmental performance of inventory systems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63386, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    52. W.-L. Jin & H. M. Zhang, 2003. "The Inhomogeneous Kinematic Wave Traffic Flow Model as a Resonant Nonlinear System," Transportation Science, INFORMS, vol. 37(3), pages 294-311, August.
    53. Ratapol Wudhikarn & Nopasit Chakpitak & Gilles Neubert, 2018. "A literature review on performance measures of logistics management: an intellectual capital perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4490-4520, July.
    54. Ratapol Wudhikarn & Nopasit Chakpitak & Gilles Neubert, 2018. "A literature review on performance measures of logistics management : an intellectual capital perspective," Post-Print hal-02312140, HAL.
    55. Konur, Dinçer, 2014. "Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks," International Journal of Production Economics, Elsevier, vol. 153(C), pages 268-279.
    56. Chrobok, R. & Kaumann, O. & Wahle, J. & Schreckenberg, M., 2004. "Different methods of traffic forecast based on real data," European Journal of Operational Research, Elsevier, vol. 155(3), pages 558-568, June.
    57. Lersteau, Charly & Rossi, André & Sevaux, Marc, 2018. "Minimum energy target tracking with coverage guarantee in wireless sensor networks," European Journal of Operational Research, Elsevier, vol. 265(3), pages 882-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    2. Tsionas, Mike, 2022. "Efficiency estimation using probabilistic regression trees with an application to Chilean manufacturing industries," International Journal of Production Economics, Elsevier, vol. 249(C).
    3. Tan Ching Ng & Sie Yee Lau & Morteza Ghobakhloo & Masood Fathi & Meng Suan Liang, 2022. "The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    4. Dhirendra Prajapati & Felix T. S. Chan & H. Chelladurai & Lakshay Lakshay & Saurabh Pratap, 2022. "An Internet of Things Embedded Sustainable Supply Chain Management of B2B E-Commerce," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    5. Julio Henrique Costa Nobrega & Izabela Simon Rampasso & Vasco Sanchez-Rodrigues & Osvaldo Luiz Gonçalves Quelhas & Walter Leal Filho & Milena Pavan Serafim & Rosley Anholon, 2021. "Logistics 4.0 in Brazil: Critical Analysis and Relationships with SDG 9 Targets," Sustainability, MDPI, vol. 13(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabadurmus, Ozgur & Kayikci, Yaşanur & Demir, Sercan & Koc, Basar, 2023. "A data-driven decision support system with smart packaging in grocery store supply chains during outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    2. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    3. Schaefer, Brian & Konur, Dinçer, 2015. "Economic and environmental considerations in a continuous review inventory control system with integrated transportation decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 142-165.
    4. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    5. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    6. Lecluyse, Christophe & Sörensen, Kenneth & Peremans, Herbert, 2013. "A network-consistent time-dependent travel time layer for routing optimization problems," European Journal of Operational Research, Elsevier, vol. 226(3), pages 395-413.
    7. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    8. Engebrethsen, Erna & Dauzère-Pérès, Stéphane, 2019. "Transportation mode selection in inventory models: A literature review," European Journal of Operational Research, Elsevier, vol. 279(1), pages 1-25.
    9. Edgar Gutierrez-Franco & Christopher Mejia-Argueta & Luis Rabelo, 2021. "Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations," Sustainability, MDPI, vol. 13(11), pages 1-33, June.
    10. Chen, Lu & Gendreau, Michel & Hà, Minh Hoàng & Langevin, André, 2016. "A robust optimization approach for the road network daily maintenance routing problem with uncertain service time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 40-51.
    11. Nouira, Imen & Hammami, Ramzi & Frein, Yannick & Temponi, Cecilia, 2016. "Design of forward supply chains: Impact of a carbon emissions-sensitive demand," International Journal of Production Economics, Elsevier, vol. 173(C), pages 80-98.
    12. Pablo Becerra & Josefa Mula & Raquel Sanchis, 2022. "Sustainable Inventory Management in Supply Chains: Trends and Further Research," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    13. Celikoglu, Hilmi Berk, 2013. "Reconstructing freeway travel times with a simplified network flow model alternating the adopted fundamental diagram," European Journal of Operational Research, Elsevier, vol. 228(2), pages 457-466.
    14. Simonetto, Marco & Sgarbossa, Fabio & Battini, Daria & Govindan, Kannan, 2022. "Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 253(C).
    15. Jiang, J. & Ng, K.M. & Teo, K.M., 2016. "Satisficing measure approach for vehicle routing problem with time windows under uncertaintyAuthor-Name: Nguyen, V.A," European Journal of Operational Research, Elsevier, vol. 248(2), pages 404-414.
    16. Dubey, Rameshwar & Bryde, David J. & Dwivedi, Yogesh K. & Graham, Gary & Foropon, Cyril, 2022. "Impact of artificial intelligence-driven big data analytics culture on agility and resilience in humanitarian supply chain: A practice-based view," International Journal of Production Economics, Elsevier, vol. 250(C).
    17. Norlund, Ellen Karoline & Gribkovskaia, Irina & Laporte, Gilbert, 2015. "Supply vessel planning under cost, environment and robustness considerations," Omega, Elsevier, vol. 57(PB), pages 271-281.
    18. Chung, Sai-Ho, 2021. "Applications of smart technologies in logistics and transport: A review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    19. Farajpour, Farnoush & Hassanzadeh, Alireza & Elahi, Shaban & Ghazanfari, Mehdi, 2022. "Digital supply chain blueprint via a systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    20. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:238:y:2021:i:c:s092552732100133x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.