IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v115y2008i2p528-541.html
   My bibliography  Save this article

Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain

Author

Listed:
  • Sahin, Funda
  • Powell Robinson, E.
  • Gao, Li-Lian

Abstract

This research studies master production schedule (MPS) and advanced order commitment (AOC) in two-stage supply chains. Experimental analysis, based on computer simulation, evaluates the impact of environmental and MPS design factors on optimal policy design as measured by schedule cost and stability. The vendor's order-size flexibility is the major factor impacting system performance. The manufacturer's optimal MPS policy is often inefficient for the vendor, resulting in total costs significantly greater than the optimal system policy. The research provides insight into the dynamic nature of scheduling and procurement systems and how they can be better coordinated through the MPS/AOC policy design.

Suggested Citation

  • Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
  • Handle: RePEc:eee:proeco:v:115:y:2008:i:2:p:528-541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00213-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Sridharan & William L. Berry & V. Udayabhanu, 1987. "Freezing the Master Production Schedule Under Rolling Planning Horizons," Management Science, INFORMS, vol. 33(9), pages 1137-1149, September.
    2. Robert C. Carlson & James V. Jucker & Dean H. Kropp, 1979. "Less Nervous MRP Systems: A Dynamic Economic Lot-Sizing Approach," Management Science, INFORMS, vol. 25(8), pages 754-761, August.
    3. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    4. Dean H. Kropp & Robert C. Carlson, 1984. "A Lot-Sizing Algorithm for Reducing Nervousness in MRP Systems," Management Science, INFORMS, vol. 30(2), pages 240-244, February.
    5. Rolf A. Lundin & Thomas E. Morton, 1975. "Planning Horizons for the Dynamic Lot Size Model: Zabel vs. Protective Procedures and Computational Results," Operations Research, INFORMS, vol. 23(4), pages 711-734, August.
    6. Zhao, Xiande & Lam, Kokin, 1997. "Lot-sizing rules and freezing the master production schedule in material requirements planning systems," International Journal of Production Economics, Elsevier, vol. 53(3), pages 281-305, December.
    7. Stadtler, Hartmut, 2000. "Improved rolling schedules for the dynamic single level lot sizing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14079, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Joseph D. Blackburn & Dean H. Kropp & Robert A. Millen, 1986. "A Comparison of Strategies to Dampen Nervousness in MRP Systems," Management Science, INFORMS, vol. 32(4), pages 413-429, April.
    9. Joseph D. Blackburn & Robert A. Millen, 1982. "Improved Heuristics for Multi-Stage Requirements Planning Systems," Management Science, INFORMS, vol. 28(1), pages 44-56, January.
    10. Simpson, N. C., 1999. "Multiple level production planning in rolling horizon assembly environments," European Journal of Operational Research, Elsevier, vol. 114(1), pages 15-28, April.
    11. Hartmut Stadtler, 2000. "Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem," Management Science, INFORMS, vol. 46(2), pages 318-326, February.
    12. Xie, Jinxing & Zhao, Xiande & Lee, T. S., 2003. "Freezing the master production schedule under single resource constraint and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 83(1), pages 65-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gansterer, Margaretha, 2015. "Aggregate planning and forecasting in make-to-order production systems," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 521-528.
    2. Wong, W.K. & Guo, Z.X. & Leung, S.Y.S, 2014. "Intelligent multi-objective decision-making model with RFID technology for production planning," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 647-658.
    3. Yao, Jianming & Liu, Liwen, 2009. "Optimization analysis of supply chain scheduling in mass customization," International Journal of Production Economics, Elsevier, vol. 117(1), pages 197-211, January.
    4. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    5. Qinyun Li & Stephen M. Disney, 2017. "Revisiting rescheduling: MRP nervousness and the bullwhip effect," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1992-2012, April.
    6. Kastsian, Darya & Mönnigmann, Martin, 2011. "Optimization of a vendor managed inventory supply chain with guaranteed stability and robustness," International Journal of Production Economics, Elsevier, vol. 131(2), pages 727-735, June.
    7. Carlos Herrera & Sana Belmokhtar-Berraf & André Thomas & Víctor Parada, 2016. "A reactive decision-making approach to reduce instability in a master production schedule," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2394-2404, April.
    8. Jairo R. Montoya-Torres & Diego A. Ortiz-Vargas, 2014. "Collaboration and information sharing in dyadic supply chains: A literature review over the period 2000–2012," Estudios Gerenciales, Universidad Icesi, November.
    9. Yingjie Fan & Frank Schwartz & Stefan Voß & David L. Woodruff, 2017. "Stochastic programming for flexible global supply chain planning," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 601-633, December.
    10. Afshin Mansouri, S. & Gallear, David & Askariazad, Mohammad H., 2012. "Decision support for build-to-order supply chain management through multiobjective optimization," International Journal of Production Economics, Elsevier, vol. 135(1), pages 24-36.
    11. As'ad, Rami & Demirli, Kudret, 2010. "Production scheduling in steel rolling mills with demand substitution: Rolling horizon implementation and approximations," International Journal of Production Economics, Elsevier, vol. 126(2), pages 361-369, August.
    12. Horng-Huei Wu & Chih-Hung Tsai & Liang-Ying Wei & Min-Jer Lu & Tzu-Fang Hsu, 2016. "A Requirement-Dependent Inventory Allocation Model for Dynamic Allocation Process in LED Chip Manufacturing Plants," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 6(3), pages 177-189, July.
    13. Hill, Alex & Doran, Des & Stratton, Roy, 2012. "How should you stabilise your supply chains?," International Journal of Production Economics, Elsevier, vol. 135(2), pages 870-881.
    14. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    2. Meixell, Mary J., 2005. "The impact of setup costs, commonality, and capacity on schedule stability: An exploratory study," International Journal of Production Economics, Elsevier, vol. 95(1), pages 95-107, January.
    3. Zhao, Xiande & Lam, Kokin, 1997. "Lot-sizing rules and freezing the master production schedule in material requirements planning systems," International Journal of Production Economics, Elsevier, vol. 53(3), pages 281-305, December.
    4. repec:dau:papers:123456789/2078 is not listed on IDEAS
    5. Jeunet, Jully, 2006. "Demand forecast accuracy and performance of inventory policies under multi-level rolling schedule environments," International Journal of Production Economics, Elsevier, vol. 103(1), pages 401-419, September.
    6. Dellaert, Nico & Jeunet, Jully, 2003. "Controlling multi-level production in a rolling-schedule environment," International Journal of Production Economics, Elsevier, vol. 85(1), pages 113-121, July.
    7. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
    8. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    9. Kimms, A, 1998. "Stability Measures for Rolling Schedules with Applications to Capacity Expansion Planning, Master Production Scheduling, and Lot Sizing," Omega, Elsevier, vol. 26(3), pages 355-366, June.
    10. Dellaert, N. & Jeunet, J., 2005. "An alternative to safety stock policies for multi-level rolling schedule MRP problems," European Journal of Operational Research, Elsevier, vol. 163(3), pages 751-768, June.
    11. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    12. de Sampaio, Raimundo J.B. & Wollmann, Rafael R.G. & Vieira, Paula F.G., 2017. "A flexible production planning for rolling-horizons," International Journal of Production Economics, Elsevier, vol. 190(C), pages 31-36.
    13. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    14. Carlos Herrera & Sana Belmokhtar-Berraf & André Thomas & Víctor Parada, 2016. "A reactive decision-making approach to reduce instability in a master production schedule," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2394-2404, April.
    15. Nguyen, Christine & Dessouky, Maged & Toriello, Alejandro, 2014. "Consolidation strategies for the delivery of perishable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 108-121.
    16. Xie, Jinxing & Zhao, Xiande & Lee, T. S., 2003. "Freezing the master production schedule under single resource constraint and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 83(1), pages 65-84, January.
    17. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    18. Merce, C. & Fontan, G., 2003. "MIP-based heuristics for capacitated lotsizing problems," International Journal of Production Economics, Elsevier, vol. 85(1), pages 97-111, July.
    19. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    20. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    21. Mohammad Ebrahim Arbabian & Shi Chen & Kamran Moinzadeh, 2021. "Capacity Expansions with Bundled Supplies of Attributes: An Application to Server Procurement in Cloud Computing," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 191-209, 1-2.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:115:y:2008:i:2:p:528-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.