IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v557y2020ics0378437120304696.html
   My bibliography  Save this article

A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction

Author

Listed:
  • Hu, Yan
  • Ni, Jian
  • Wen, Liu

Abstract

Forecasting the copper price volatility is an important yet challenging task. Given the nonlinear and time-varying characteristics of numerous factors affecting the copper price, we propose a novel hybrid method to forecast copper price volatility. Two important techniques are synthesized in this method. One is the classic GARCH model which encodes useful statistical information about the time-varying copper price volatility in a compact form via the GARCH forecasts. The other is the powerful deep neural network which combines the GARCH forecasts with both domestic and international market factors to search for better nonlinear features; it also combines the long short-term memory (LSTM) network with traditional artificial neural network (ANN) to generate better volatility forecasts. Our method synthesizes the merits of these two techniques and is especially suitable for the task of copper price volatility prediction. The empirical results show that the GARCH forecasts can serve as informative features to significantly increase the predictive power of the neural network model, and the integration of the LSTM and ANN networks is an effective approach to construct useful deep neural network structures to boost the prediction performance. Further, we conducted a series of sensitivity analyses of the neural network architecture to optimize the prediction results. The results suggest that the choice between LSTM and BLSTM networks for the hybrid model should consider the forecast horizon, while the ANN configurations should be fine-tuned depending on the choice of the measure of prediction errors.

Suggested Citation

  • Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  • Handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304696
    DOI: 10.1016/j.physa.2020.124907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304696
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Cui & Ke Huang & H.J. Cai, 2015. "Application of a TGARCH-wavelet neural network to arbitrage trading in the metal futures market in China," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 371-384, February.
    2. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Abdolreza Yazdani-Chamzini & Siamak Haji Yakhchali & Diana Volungevičienė & Edmundas Kazimieras Zavadskas, 2012. "Forecasting gold price changes by using adaptive network fuzzy inference system," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 13(5), pages 994-1010, April.
    5. Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
    6. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    7. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Lahmiri, Salim, 2017. "Modeling and predicting historical volatility in exchange rate markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 387-395.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Ederington, Louis H & Lee, Jae Ha, 1993. "How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    12. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    13. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    14. Marcelo Sardelich & Suresh Manandhar, 2018. "Multimodal deep learning for short-term stock volatility prediction," Papers 1812.10479, arXiv.org.
    15. Bentes, Sonia R., 2015. "Forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 355-364.
    16. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    17. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    2. Lu, Linna & Lei, Yalin & Yang, Yang & Zheng, Haoqi & Wang, Wen & Meng, Yan & Meng, Chunhong & Zha, Liqiang, 2023. "Assessing nickel sector index volatility based on quantile regression for Garch and Egarch models: Evidence from the Chinese stock market 2018–2022," Resources Policy, Elsevier, vol. 82(C).
    3. Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    4. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.
    5. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    6. Li, Houjian & Zhou, Deheng & Hu, Jiayu & Li, Junwen & Su, Mengying & Guo, Lili, 2023. "Forecasting the realized volatility of Energy Stock Market: A multimodel comparison," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    7. Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
    8. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
    9. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    10. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    11. Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
    12. Srivastava, Mrinalini & Rao, Amar & Parihar, Jaya Singh & Chavriya, Shubham & Singh, Surendar, 2023. "What do the AI methods tell us about predicting price volatility of key natural resources: Evidence from hyperparameter tuning," Resources Policy, Elsevier, vol. 80(C).
    13. Vanshu Mahajan & Sunil Thakan & Aashish Malik, 2022. "Modeling and Forecasting the Volatility of NIFTY 50 Using GARCH and RNN Models," Economies, MDPI, vol. 10(5), pages 1-20, April.
    14. Guo, Honggang & Wang, Jianzhou & Li, Zhiwu & Lu, Haiyan & Zhang, Linyue, 2022. "A non-ferrous metal price ensemble prediction system based on innovative combined kernel extreme learning machine and chaos theory," Resources Policy, Elsevier, vol. 79(C).
    15. Gustavo Carvalho Santos & Flavio Barboza & Antônio Cláudio Paschoarelli Veiga & Mateus Ferreira Silva, 2021. "Forecasting Brazilian Ethanol Spot Prices Using LSTM," Energies, MDPI, vol. 14(23), pages 1-15, November.
    16. Özgür Ömer Ersin & Melike Bildirici, 2023. "Financial Volatility Modeling with the GARCH-MIDAS-LSTM Approach: The Effects of Economic Expectations, Geopolitical Risks and Industrial Production during COVID-19," Mathematics, MDPI, vol. 11(8), pages 1-26, April.
    17. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    18. Kshitij Kakade & Aswini Kumar Mishra & Kshitish Ghate & Shivang Gupta, 2022. "Forecasting Commodity Market Returns Volatility: A Hybrid Ensemble Learning GARCH‐LSTM based Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(2), pages 103-117, April.
    19. Kakade, Kshitij & Jain, Ishan & Mishra, Aswini Kumar, 2022. "Value-at-Risk forecasting: A hybrid ensemble learning GARCH-LSTM based approach," Resources Policy, Elsevier, vol. 78(C).
    20. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
    21. Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
    22. Rayadurgam, Vikram Chandramouli & Mangalagiri, Jayasree, 2023. "Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?," Finance Research Letters, Elsevier, vol. 54(C).
    23. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    24. Zhishun Wang & Wei Lu & Kaixin Zhang & Tianhao Li & Zixi Zhao, 2021. "A parallel-network continuous quantitative trading model with GARCH and PPO," Papers 2105.03625, arXiv.org, revised May 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    2. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    3. Stavros Stavroyiannis, 2017. "A note on the Nelson Cao inequality constraints in the GJR-GARCH model: Is there a leverage effect?," Papers 1705.00535, arXiv.org.
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    6. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    8. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
    9. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2015. "Modeling and forecasting crude oil price volatility: Evidence from historical and recent data," FinMaP-Working Papers 31, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    10. Sauraj Verma, 2021. "Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 130-142, April.
    11. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    12. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
    13. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    14. Sang Hoon Kang & SEONG-MIN YOON, 2008. "Asymmetry and Long Memory Features in Volatility: Evidence From Korean Stock Market," Korean Economic Review, Korean Economic Association, vol. 24, pages 383-412.
    15. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    16. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
    17. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
    18. Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 96327, University Library of Munich, Germany.
    19. Saker Sabkha & Christian de Peretti, 2018. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Working Papers hal-01710398, HAL.
    20. Yanlin Shi & Yang Yang, 2018. "Modeling High Frequency Data with Long Memory and Structural Change: A-HYEGARCH Model," Risks, MDPI, vol. 6(2), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.