IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v28y2021i2p130-142.html
   My bibliography  Save this article

Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach

Author

Listed:
  • Sauraj Verma

Abstract

Volatility is an important element for various financial instruments owing to its ability to measure the risk and reward value of a given financial asset. Owing to its importance, forecasting volatility has become a critical task in financial forecasting. In this paper, we propose a suite of hybrid models for forecasting volatility of crude oil under different forecasting horizons. Specifically, we combine the parameters of generalized autoregressive conditional heteroscedasticity (GARCH) and Glosten–Jagannathan–Runkle (GJR)‐GARCH with long short‐term memory (LSTM) to create three new forecasting models named GARCH–LSTM, GJR‐LSTM, and GARCH‐GJRGARCH LSTM in order to forecast crude oil volatility of West Texas Intermediate on different forecasting horizons and compare their performance with the classical volatility forecasting models. Specifically, we compare the performances against existing methodologies of forecasting volatility such as GARCH and found that the proposed hybrid models improve upon the forecasting accuracy of Crude Oil: West Texas Intermediate under various forecasting horizons and perform better than GARCH and GJR‐GARCH, with GG–LSTM performing the best of the three proposed models at 7‐, 14‐, and 21‐day‐ahead forecasts in terms of heteroscedasticity‐adjusted mean square error and heteroscedasticity‐adjusted mean absolute error, with significance testing conducted through the model confidence set showing that GG–LSTM is a strong contender for forecasting crude oil volatility under different forecasting regimes and rolling‐window schemes. The contribution of the paper is that it enhances the forecasting ability of crude oil futures volatility, which is essential for trading, hedging, and purposes of arbitrage, and that the proposed model dwells upon existing literature and enhances the forecasting accuracy of crude oil volatility by fusing a neural network model with multiple econometric models.

Suggested Citation

  • Sauraj Verma, 2021. "Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 130-142, April.
  • Handle: RePEc:wly:isacfm:v:28:y:2021:i:2:p:130-142
    DOI: 10.1002/isaf.1489
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1489
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    2. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    3. Fenghua Wen & Jihong Xiao & Chuangxia Huang & Xiaohua Xia, 2018. "Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 319-334, January.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    7. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    8. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    9. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    10. Tamal Datta Chaudhuri & Indranil Ghosh, 2016. "Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange Rate in a Multivariate Framework," Papers 1607.02093, arXiv.org.
    11. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    12. Shawkat Hammoudeh & Ramazan Sari & Bradley T. Ewing, 2009. "Relationships Among Strategic Commodities And With Financial Variables: A New Look," Contemporary Economic Policy, Western Economic Association International, vol. 27(2), pages 251-264, April.
    13. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    14. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    16. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    17. Singhal, Shelly & Ghosh, Sajal, 2016. "Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models," Resources Policy, Elsevier, vol. 50(C), pages 276-288.
    18. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    19. Husain, Shaiara & Tiwari, Aviral Kumar & Sohag, Kazi & Shahbaz, Muhammad, 2019. "Connectedness among crude oil prices, stock index and metal prices: An application of network approach in the USA," Resources Policy, Elsevier, vol. 62(C), pages 57-65.
    20. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    21. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    22. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    23. Zhang, Yue-Jun & Fan, Ying & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Spillover effect of US dollar exchange rate on oil prices," Journal of Policy Modeling, Elsevier, vol. 30(6), pages 973-991.
    24. Bentes, Sonia R., 2015. "Forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 355-364.
    25. Bildirici, Melike E. & Turkmen, Ceren, 2015. "Nonlinear causality between oil and precious metals," Resources Policy, Elsevier, vol. 46(P2), pages 202-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Ramos-Pérez & Pablo J. Alonso-González & José Javier Núñez-Velázquez, 2021. "Multi-Transformer: A New Neural Network-Based Architecture for Forecasting S&P Volatility," Mathematics, MDPI, vol. 9(15), pages 1-18, July.
    2. Rayadurgam, Vikram Chandramouli & Mangalagiri, Jayasree, 2023. "Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?," Finance Research Letters, Elsevier, vol. 54(C).
    3. Bouteska, Ahmed & Hajek, Petr & Fisher, Ben & Abedin, Mohammad Zoynul, 2023. "Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    2. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    3. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    4. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    6. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    7. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    8. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    9. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    10. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    11. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    12. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    13. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    14. Kanungo, Rama Prasad, 2021. "Uncertainty of M&As under asymmetric estimation," Journal of Business Research, Elsevier, vol. 122(C), pages 774-793.
    15. Heitham Al-Hajieh & Hashem AlNemer & Timothy Rodgers & Jacek Niklewski, 2015. "Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 4(2), pages 9-26.
    16. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    17. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    18. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    19. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    20. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:28:y:2021:i:2:p:130-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.