IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/80418.html
   My bibliography  Save this paper

Backtesting VaR Models: A Τwo-Stage Procedure

Author

Listed:
  • Angelidis, Timotheos
  • Degiannakis, Stavros

Abstract

Academics and practitioners have extensively studied Value-at-Risk (VaR) to propose a unique risk management technique that generates accurate VaR estimations for long and short trading positions. However, they have not succeeded yet as the developed testing frameworks have not been widely accepted. A two-stage backtesting procedure is proposed in order a model that not only forecasts VaR but also predicts the loss beyond VaR to be selected. Numerous conditional volatility models that capture the main characteristics of asset returns (asymmetric and leptokurtic unconditional distribution of returns, power transformation and fractional integration of the conditional variance) under four distributional assumptions (normal, GED, Student-t, and skewed Student-t) have been estimated to find the best model for three financial markets (US stock, gold and dollar-pound exchange rate markets), long and short trading positions, and two confidence levels. By following this procedure, the risk manager can significantly reduce the number of competing models.

Suggested Citation

  • Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 80418, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:80418
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/80418/1/MPRA_paper_80418.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
    2. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    3. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    4. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    5. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    6. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    7. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing, vol. 6(3), pages 226-238, May.
    8. Laurent, Sebastien & Peters, Jean-Philippe, 2002. "G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 447-485, July.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    13. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
    14. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    15. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    16. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    17. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    18. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
    19. Guermat, Cherif & Harris, Richard D. F., 2002. "Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns," International Journal of Forecasting, Elsevier, vol. 18(3), pages 409-419.
    20. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 531-554, December.
    21. William J. Baumol, 1963. "An Expected Gain-Confidence Limit Criterion for Portfolio Selection," Management Science, INFORMS, vol. 10(1), pages 174-182, October.
    22. S»bastien Laurent and Jean-Philippe Peters, 2001. "G@RCH 2.0: An Ox Package for Estimating and Forecasting Various ARCH Models," Computing in Economics and Finance 2001 123, Society for Computational Economics.
    23. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    24. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    25. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    26. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    27. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    28. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    29. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    30. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    31. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
    32. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    33. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    34. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muzaffer Akat & Cahit Memis, 2018. "Will Switching From The Var To The Expected Shortfall Provide The Efficiency In The Capital Adequacy? Evidence From The Fx Positions," Eurasian Journal of Business and Management, Eurasian Publications, vol. 6(2), pages 1-13.
    2. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    3. Benjamin Beckers & Helmut Herwartz & Moritz Seidel, 2017. "Risk forecasting in (T)GARCH models with uncorrelated dependent innovations," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 121-137, January.
    4. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    5. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    6. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    7. Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
    8. Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
    9. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
    10. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    2. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    3. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    4. Nico Katzke & Chris Garbers, 2015. "Do Long Memory and Asymmetries Matter When Assessing Downside Return Risk?," Working Papers 06/2015, Stellenbosch University, Department of Economics.
    5. Nieto, María Rosa & Ruiz Ortega, Esther, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Kulp-Tåg, Sofie, 2007. "An Empirical Investigation of Value-at-Risk in Long and Short Trading Positions," Working Papers 526, Hanken School of Economics.
    7. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
    8. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
    9. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    10. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    11. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    12. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    13. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
    14. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    15. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    16. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    17. repec:awi:wpaper:0472 is not listed on IDEAS
    18. Zouheir Mighri & Raouf Jaziri, 2023. "Long-Memory, Asymmetry and Fat-Tailed GARCH Models in Value-at-Risk Estimation: Empirical Evidence from the Global Real Estate Markets," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 41-97, March.
    19. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    21. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    More about this item

    Keywords

    Backtesting; Value-at-Risk; Expected Shortfall; Volatility Forecasting; Arch Models;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:80418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.